S AD-A121 172 MANUFACTURING METHODS AND YECHNDLDGY (MANTECH) PROGRAM 1/3
- MANUFACTURING TECH.*. (U) HUGHES HELICOPTERS INC CULVER
CITY CA J V ALEXANDER ET AL. OCT 81 HHI-81-367
UNCLASSIFIED USAAVRADCOM-TR-82-F-1 DAAKS0-78-G-0004 F/G 1/3




I"" 10 ﬂf mnl:nf
L B e
2 s pee




@

AVRADCOM AD
Report No. TR-82-F-1

MANUFACTURING METHODS AND TECHNOLOGY

(MANTECH) PROGRAM MANUFACTURING |

TECHNIQUES FOR A COMPOSITE TAIL SECTION FOR |
THE ADVANCED ATTACK HELICOPTER B

.V. ALEXANDER
.E. HEAD

-

NWA121172

October 1981 FINAL REPORT

Contract No. DAAK50-78-G-0004 '
DO 0002 ‘

Approved for public release; o
distribution unlimited S L

%, NOV O § 1982 ’

UNITED STATES ARMY .
AVIATION RESEARCH AND DEVELOPMENT COMMAND ~E | v
.
L

IS )
‘p




UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dats Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE per AP INSTRUCTIONS

[7. REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
USAAVRADCOM TR-32-F-1 T S

4. TITLE (and Subtitle) / 5. TYPE OF REPORT & PERIOD COVERED
Manufacturing Techniques for a Composite Final Repox.'t
Tail Section for the Advanced Attack Helicopter Sept. 1979 - April 1981

§. PERFORMING ORG. REPORT NDMBER
HHI 81-367

7. AUTHOR(s) 3. CONTRACT OR GRANT NUMBER(a)
J. V. Alexander DAAK50-78-G-0004
R. E. Head (DO-0002)

9. PERFORMING ORGANIZATION NAME AND ADORESS 10. FROGRAH ELEMENT, PROJECT TASK
Hughes Helicopters, Inc. REA & WORK UNIT NUMBER
Centinela and Teale Streets Project No. 7333
Culver City, CA 90230

11. CONTROLLING OFFICE NAME AND ADORESS 12. REPORT DATE
U.S. Army Aviation Research and Development Octooer 1931

Command, Attn: DRDAV-EGX, 4300 Goodfellow| 13 NUMBER OF PAGES
Blvd., St. Louis, MO ©3120

14. MONITORING AGENCY NAME & ADDRESS({! different from Cantrolling Office) 1S. SECURITY CL ASS. (of thia report)

Unclassified

1Se. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. OISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the sbetract entered In Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side If y and identify dy block number)
Fuselage Antenna Pattern Fabrication Kevlar
Empennage Lightning Protection Resin Nomex
Composite Structure Tooling Graphite Electrolysis

Ballistic Survivability

20. ABSTRACT (Contisus en reverse oy M ry sod fy by block number)

This manufacturing methods and technology program involved the study of
estaolishing manufacturing methods for a Composite Tail Section (CTS) for
the AH-64A Advanced Attack Helicopter by the wet filament wound, cocure
process. The CTS was meant to replace equivalent metal components on
the AH-64A while providing potential weight and cost savings. Ballistic
tolerance against 23mm HEI-T was demonstrated, and VHF antenna

DD “u,, 1473 soimon orF 1 OV 8813 OBSOLETE UNCLASSIFIED

SECUMTY CLASSIFICATION OF THIS PAGE (Wiren Deta Entered)

awo- - e

M dmad i

AN

RS sk NN o 0. i A IANIN® Gt 2., ~ - »-‘




UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entored)

20, performance was shown to be unaffected by the change to composite
construction. The program was terminated for fiscal reasons just
when the CTS design was completed and the tooling design was within
one month of completion. This CTS concept offers significant benefits
to the AH-64A helicopter program and should be reinstated at the .
earliest opportunity. ¢ J

UNCLASSIFIED ‘
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered) :

ot MJ T ‘ .":




PREFACE

This report was prepared by Hughes Helicopters, Inc. (HHI) under U. S,
Army Basic Ordering Agreement DAAK50-78-G-0004, Delivery Order 0002,
The contract was sponsored by the U.S. Army Aviation Research and
Development Command { AVRADCOM) and administered under the technical
direction of Mr. James Tutka, AVRADCOM, with assistance from Mr,
Nicholas Calapodas, Applied Technology Laboratory, Ft. Eustis, VA,

The technical tesks were conducted under the direction of HHI's program
managers, Messrs., Nicholas Mocerino and Robert Head, and Mr. Sherwood
Twitchell, the project engineer at Fiber Science, Inc,, the major sub-
contractor for tooling and fabrication.
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INTRODUCTION

In August, 1979, Hughes Helicopters, Inc. (HHI) was awarded a contract
under a Manufacturing Methods and Technology (MM&T) program to develop
and refine the manufacturing processes .::2cessary to fabricate and test a

set number of Composite Tail Sections (CTS) for the AH-64A Advanced Attack
Helicopter (AAH). Anticipated benefits resulting from this MM&T program
were reduced weight and cost, and improved survivability, reliability, and
maintainability.

The CTS program as initially defined required that the aft portion of the
tailboom, the vertical tail spar, and the horizontal tail be the primary
composite structure. See Figure 1. Existing fairings from the prototype
design such as those for the leading and trailing edges of the vertical tail,
driveshaft cover, and aft tailboom fairing were to be transferred to the CTS.
The CTS was to accommodate all existing mounts for the gearboxes, controls,
tail wheel, etc.

STA 450

Figure 1. AH-64A - Initial CTS Configuration




The CTS technology was based on work HHI had done previously in concert
with Fiber Science, Inc. (FSI) for a composite tail assembly for the AH-1G
helicopter (Reference 1), a composite main rotor blade for the AH-1G
(Reference 2), and a composite landing gear for the AH-u4A (Reference 3).
These components were fabricated by the wet filament winding, cocure
process and this process was to be carried over into the CTS program. HHI
had overall program responsibility, did the design refinement work, and was
to conduct all laboratory and flight testing. FSI was responsible for optim-
izing the tooling and fabrication processes for the CTS components.

When the CTS program was proposed, the prototype metal tailboom for the
AH-64A had a fold joint at Fuselage Station (Sta) 450 to aid in an air transport-
ability in C-141 cargo planes. However, the Air Force lengthened the
fuselages of all its C-141s making the AH-64A tail {folding no longer needed,

In the interest of structural efficiency, the fold joint was replaced by a ten-
sion bolt attachment. The prototype tail assembly was a T-tail configuration
with the horizontal stabilizer rigidly attached to the top of the vertical tail.

This was to be the configuration for the composite tail assembly -- a geo-
metric copy of the prototype metal tail section,

AH-64A flight tests that were made just before the CTS design work began
showed that the helicopter's flying qualities could be markedly improved by
changing from the T-tail configuration to one having a controllable stabilator
mounted at the base of the vertical tail. When this change was made, the
tail rotor was moved up the vertical tail to have clearance from the new
position of the stabilator. The composite tail design matched this flight

test configuration from the beginning (see Figure 2).

As the design work progressed, it became apparent that important benefits
could be attained if the composite portion of the tailboom was extended fur-
ther forward, A contract modification was negotiated to extend the com-
posite structure 80 inches forward and make the metal-to-composite joint

at Sta 370. This was the farthest forward point the composite structure
could go without compromising the existing design of equipment bays, access
doors, etc. It was determined that a shear bolt attachment at this point
would be a production manufacturing break.

Other modifications were made to the CTS design to accommodate the find-
ings of the prototype flight test program and the composite flexbeam tail
rotor design program that were going along in parallel. These included
softening the torsional stiffness of the tailboom to avoid a resonance with
the main rotor 4-per-rev frequency, increasing the torsional strength of
the tailboom and the sideward bending strength of the vertical tail to support




Figure 2. AH-64A Final CTS Configuration

the composite tail rotor that had 16 percent more thrust capability than the
flight test metal tail rotor, and changing the vertical tail incidence and
camber to unload the tail rotor in cruise flight to reduce its flapping motion
for better fatigue life.

So what started out to be essentially a one-for-one replacement of metal

by composites turned into a sophisticated CTS design that improved dynamics,
permitted the use of the larger tail rotor needed for high altitude control-
lability when the T700-GE-701 engine is installed, and made a spectacular
reduction in parts count while reducing the weight and cost. In this CTS
configuration, the gearbox, control system, and tail wheel mount points were
held inviolate, and the drive shaft covers and vertical tail leading edge fair-
ing were retained. A new trailing edge fairing for the vertical tail spar

was required by the modified incidence and camber,

A tradeoff. study was made to determine the best design concepts for the

three CTS components: tailboom, vertical tail, and stabilator. For the
tailboom and vertical tail spar, a monocoque honeycomb sandwich shell with

15




frames located at high load points was determined to be optimum, consistent
with good design practice and the wet filament winding manufacturing process.
The skins of these components were selected to be hybrid graphite/Kevlar/
epoxy. The best stabilator configuration proved to be a skin/spar/rib
arrangement with graphite/epoxy used for the spars and central ribs, and
Kevlar/epoxy for the skin and for the nose and tail portions of the ribs. -~

In parallel with this design refinement work, FSI established refined processes
for fabricating the three CTS components, predominantly by the wet filament
winding, cocure process that had been used successfully in a wide variety of
previous programs. This work included analytical and experimental assess-
ment of mandrel shapes to accommodate the specified winding angles, frame
and hardpoint inserts, etc. Based on these activities, tooling suitable for
building 50 shipsets of the components was designed,

At the time that the CTS program was terminated, the design was complete.
The tooling design was in the final stages, and tool fabrication was ready

to start. Material properties tests in support of design had been completed.
Antenna pattern tests had been conducted to show that the composite struc-
ture had no appreciable influence on the radiation characteristics.

Ballistic damage tests, conducted at the Army's Ballistic Research
Laboratory, had shown that simulated composite tailboom components were
survivable against 23mm HEI-T projectiles equipped with MG-25 fuzes.
Lightning survivability tests had demonstrated the suitability of the design.
Both the ballistic and lightning tests were sponsored by HHI.

The analysis of the CTS showed that in comparison with the metal* com-
ponents it would replace, there would be:

) 71 pounds weight saving

° $41, 000 design to unit production cost saving (1981 dollars)
e 269 parts count saving

° 9047 fastener count saving

e 55 feet per minute vertical rate of climb increase from weight
reduction

° $1.1 million fuel saving over life of the fleet

*AH-64A weight and cost values for metal components are those quoted for
the second quarter of 1981.




DESIGN REQUIREMENTS

The Composite Tail Section (CTS) consists of three major components:

o Tailboom

° Stabilator

] Vertical Tail
plus fairings, covers, steps, handholds, lights, and antennas,
The basic geometry of the CTS is shown in the lines drawing, Figure 3,
The strategy for optimizing the design of the CTS to match optimized techniques
used in building it is to create a low cost, light-weight configuration while
providing:

] External Geometric Similarity

] Accommodation of Existing Gearboxes, Controls and Tailwheel

° Maximum Incorporation of Filament-Reinforced Plastic Structure

® Aerodynamic Compatibility

o 4500-Hour Service Life

. Ballistic Survivability

] Lightning Survivability

° Reduced Parts and Fastener Count

o Interchangeability at Fuselage Station 370

() Accommodation of Existing Antennas, Lights, Mission Equipment
Kits

In addition, the configuration must accept either the 112-inch diameter
composite flexbeam tail rotor or the 110-inch diameter prototype metal
tail rotor,

17
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The basic AH-64A description and all its design criteria remain the same as
those described in Reference 4, the Design Criteria Report for AH-64A
vehicle, with the exception of minor geometry changes to the stabilator and
vertical tail (see Design Refinement section},

For reference, the flight envelope for weights at or below the Basic Struc-
tural Design Gross Weight (BSDGW) is presented in Figure 4. For weights
above the BSDGW, the maximum vertical load factor is reduced by the ratio
of the BSDGW divided by the gross weight for the particular condition up to
the maximum alternate gross weight. In no case is the load factor less than
2.0. The sideslip envelopes for the AH=64A are presented in Figure 5 for
the static limit, transient limit, and emergency limit.

The requirements for CTS stiffness to assure good dynamic properties are
given in Figures 6, 7, and 8. These are chosen to place the stabilator roll
and yaw assymetric natural frequencies at 30 Hz while avoiding the main
rotor 4P, main roto. 8P, and tail rotor 1P excitation frequencies that occur
at 19,3, 38.6, and 23.5 Hz, respectively.

The basic external loads for the composite tail section are used for static
and failsafe analysis and, where specified, for weighted fatigue. Oscillatory
load levels from the flight strain survey weighted fatigue level of £10 percent
of limit load for the fuselage and +30 percent for the vertical stabilizer and
stabilator are used, These loads are the same as those specified for the
bagic AH=-64A and are calculated for the flight maneuver conditions

specified in Reference 5, and in Army~approved deviations to Reference 5.

One of the driving forces behind the increased use of composites is the
increase in reliability; i.e., the decrease in failure rate. Structural failures
can be classified according to severity and cause.

Severity of failures can be classified as minor, major, and critical, Minor
failures merely require maintenance, and can generally be termed discrep=
ancies., Major failures represent a threat to personnel and equipment and
may result in a degradation of performance. Critical failures may result
in loss of control of the aircraft.
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Classification by cause divides failure into inherent or induced modes.
Induced failures generally include any damage caused by external influences
such as foreign objects, by certain environmental factors, or by conditions
outside of the design envelope (such as overload conditions). Inherent
failures include anything that is not induced such as fretting, cracking, etc.,
that occur at load levels within the design envelope, Examples of induced
and inherent failures are given in Table 1,
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TABLE I. EXAMPLES OF STRUCTURAL FAILURES

Inherent Failures

Minor
[ Fretting

) Delaminations

° Change in bolt preload

Major

e Formation of small crack

® lLoss of primary fastener

Critical

@ Loss of mu'tiple primary fastener
e Growth of large crack

Induced Failures

Minor

L] Scratch or gouge

] Delamination

® Lightning damage

Major

° Deep gouge

®  Small ballistic perforation

Critical

e Large Ballistic perforations
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DESIGN REFINEMENT

The A-o4A Conposite Tal secuon (CTsS) s designed according to the

existing rretal tall section design criteria. Based on the success that HHI
had experienced with wet nilament winding in other aircraft primary struc-
tare programs for the Army, this process was selected for fabricating all

the major components.

Desiun refinements include optunization of meight, mass distribution,
nertial propertices, st:ffness distributions, natural frequencies, vibratory
loads, fusclage vibrations, oallistic survivability/tolerance, anticipated
service life, maintainability/reliability, acquisition cost, and life cycle cost,
The design s in acvordance with the AH-u4A system specification AMC-SS-
AAI-HIUOU0A and noeets the following restraints:

° The aluminum fuselage/CTS interface is a permanent joint at
Fuselage Station (Sta 370).

° CTS stiffness distributions are dynamically compatible with the
test aircraft.

. The CTS interfaces with existing operational hardware of the
AH-+4A (i.e., gearboxes, tail rotor drive shaft, control components,
landing gear, etc.).

] The external veometry of the aluminum baseline configuration is
maintained.

® The antennas are functionally integrated within the tailboom and
vertical tail.

This section describes the design features of the CTS.

The CTS that consists of three major components -- tailboom, stabilator,

and vertical tail -- mates with the AH-64A airframe in a manufacturing splice
at Sta 370. Figure 9 is an isometric sketch that shows the configuration of
the CTS and the associated fairings, covers, and external hardware that

mate with it. Assembly and major subassembly drawings of these components
may be found at the back of this report (Figures 95 through 99).

Before this configuration that is based primarily on sandwich wall monocoque

construction was selected, a predesign study investigated other structural
concepts. The primary contender was a skin, stringer, frame design of
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the tailboom and vertical tail spar. Structurally, this alternate design was
equally acceptable, but the sandwich concept was selected as being more
amenable to the wet filament winding manufacturing process,

TAILBOOM

The composite tailboom shown in Figure 10 retains most of the baseline
metal fuselage configuration. It transitions from a flat-topped ovaloid at
Sta 370 to a circular cone from Sta 450 to Sta 530, From Sta 530 aft, the
composite tailboom maintains a constant diameter, differing from the con-

tinuing cone shape of the baseline configuration,

The composite tailboom is composed of the following major components (see
Figures 95 and 96:

° Structural Shell :
[ ] Station 387 Frame
® Forward Fitting Assembhly
e Intercostal, Upper
® Intercostal, Lower (2)
) Intercostal, Jack Fitting
L) Rear Frame
Other details that are attached onto this assembly are:
o Access Steps, Upper and Lower
® Angle Fairing, Right and Left
e Jack Point Fitting

Hard points (local reinforcement and/or core filled honeycomb) are provided
for the following details that are common to both CTS and metal baseline:

e Drive Shaft Fairing Hinges

o Drive Shaft Bearing Support Bracket
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] Drive Shaft Anti-Flail and Damper Support

° Flare Dispenser

The structural shell of the tailboom is a graphite-Kevlar/epoxy sandwich
with balanced helically wound skins and 0. 50 inch thick Nomex core. The
inner and outer skins converge at the front end of the tailboom (Sta 370) and
at the aft, constant diameter section to form solid laminates as Figure 11
shows,

The base sandwich skin thickness is 0,043 inch and the winding angle is 8°
+1° at Sta 370. Skin thickness and wrap angle increase from the forward to
aft end of the tailboom. Hoop windings (30°) stabilize the spiral windings.
The skin is wound from a 50-50 ratio of graphite/Kevlar rovings. This wind-
ing pattern is tailored to provide the required bending and torsional stiffness
and strength,

The solid laminate attach flange at Sta 370 is interwound with +45° graphite
fabric and 90° E-glass to a total flange thickness of 0.172 inches. The inter-
wound plies, in addition to providing the necessary bearing area, are struc-
turally balanced in thickness and elastic modulus to evenly distribute load

into the two skins. Figure 12 shows how this solid laminate region is attached
to the forward airframe by splice plates and a double row of HiLok fasteners.

The solid laminate at the aft end of the tailboom (sta 530, aft) is also made up
of interwound fabric plies tailored for bearing strength and balanced load
distribution.
Local attach points and cut-outs employ additional interwound plies of fabric
to provide load-carrying structure in these high stress areas. The honeycomb
core in these areas is filled with syntactic foam to stabilize the core, anchor
the fasteners, or provide compressive strength to support fastener loads.
The materials used to fabricate the tailboom are:

° Graphite Roving: T-300, 3000 Filament Count

) Kevlar Roving: Kevlar-49, 1420 Denier

o Graphite Fabric: T-300, 3000 Filament count, Eight Harness,
Satin Weave

o E-glass Fabric: 1581 Glass Fabric

31




be

s{reja(d 3anjdnIg

1SNOJ 01’0

AXOd3/sH38id

SSV19 a3nw 340D

MIIHL

[IID AT

- Wwoog ter ‘{1 2an3dig

NINS H3LNO ONIGNIM

340438 V3uV SIHL

zowm.uuw 3AIS3IHAY WYO4
QUVYMHO 3 HLIM 3502 T4

1V 133HS
30V4 HOV3
€00

ZLo

oLe
WOOo8IvL
<N.MM 40 ON3 Liv vis
1V 133HS
30v4 HOV3

6¥0'0

R

32




0L¢ ®IS ‘oo1ds Sutanjoejnueiy 9jtsodwo)/TeldN 21 sangdty

ELAACF]
WONINNTY

di1d HIONIYLS

\EDZ:ZDJ( \EDZ.EDJ(

NIdS

WNNINNTY
WOoo08 NIivi

31ISOdNOD 31V7d 301748

WNNIWNNTY

s
p—

00'0LE V1S

33




e [Epoxy Resin: APCO 2434/2347
) Core Adhesive: FM 123-5 Film Adhesive
° Core: Nomex HRH - 10/0X - 3/16

There are three graphite/epoxy frames that are molded separately and then
assembled into the tailboom. The forward one at Sta 387 is provided to
stiffen the tail rotor shaft bearing support at this location. It is installed by
a secondary bonding process. The two back-~to-back frames centered at

Sta 532.33 are made into a subassembly unit consisting of these two frames,
a connecting strap bonded around them, and four graphite/epoxy intercostals
that distribute tail wheel loads into the tailboom. This subassembly unit is
wound into the tailboom shell structure to become an integral part of it. The
tailboom in the region of this subassembly unit is shown in Figure 13.

A machined aluminum fitting is bolted between the two back-to-back com-

posite frames after the tailboom is cured (see Figure 14). This is the fitting
to which the forward bolts for the vertical tail attach.

The materials for the frames are:
] Fitting: 7075-T6 Aluminum Alloy

® Frames: Graphite Fabric: T-300, 3000 Filament Count, Eight
Satin Weave

Glass Fabric: 1581 Glass Cloth
Resin: APCO 2434/2347

Four graphite/epoxy intercostals are located between the forward/frame
assembly and the rear frame, (see Figure 13). Three of these intercostals
transfer most of the tail wheel shock and strut loads into the skin. The
balance of the load goes into the forward frame assembly through a row of
shear bolts. The fourth intercostal transfers jacking and tie-down loads
into the tailboom. The materials for the intercostals are :

e Graphite Fabric: T-300, 3000 Filament Count, Eight Harness,
Satin Weave

e Epoxy Resin: APCO 2434/2347
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TAIL WHEEL SHOCK

VERTICAL STABILIZER STRUT LUG

ATTACH POINTS

\ STABILATOR

ACTIVATOR LUG

HORIZONTAL REAR FRAME

STABILATOR
PIVOT LUG

TAIL WHEEL

STRUT LUG
JACK PAD &
TIE OOWN
FITTING

Figure 14, Aft End of Tailboom
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The rear frame, Figure 14, is a machined aluminum fitting that has
multiple functions. It contains the tail wheel assembly attach points,
stabilator pivot points, and the stabilator actuator attach points. It provides
the two aft points for vertical tail attachment and anchors the aft jacking
fitting. The frame, made from 7075-T6 aluminum alloy, is bolted into the
tailboom with HilLok fasteners,

VERTICAL TAIL

The geometry of the composite vertical tail is:

Area (from boom G ) - ftz 32.2
Span (from boom ¢, ) - in, 113.0
Tip chord - in. 35.1

Chord of section at W, L., 196,0 ~ in. 43,5
Root chord (at boom (L) - 1in. 44.0

Geometric aspect ration (based on 2.5
span from boom §,)

Airfoil NACA 4415 modified
Leading edge sweep - deg 29.4
Rudder - {mean) percent chord 55.0
Rudder deflection - deg 4.0
Rudder tab - (mean) percent chord 25,0
Rudder tab deflection (from rudder 18,0

chord line) - deg
Geometric incidence - deg 0.0

Aerodynamic incidence - deg 9.4

The major structural element in the vertical tail is the spar box shown in
Figure 15. Leading and trailing edge fairings and tip cap as shown in
Figure 9 complete the assembly. The vertical tail's planform is unchanged




STEP/HAND-HOLD

ALUMINUM FITTINGS/
GRAPHITE EPOXY RIBS

GRAPHITE/EPOXY LONGOS

NOMEX HONEYCOMB

GRAPHITE KEVLAR/EPOXY SKINS

GRAPHITE/EPOXY
GEARBOX FITTING

GRAPHITE/EPOXY LONGIOS

GRAPHITE/EPOXY CLOSE OUT RiB

ALUMINUM ROOT
FITTINGS

Figure 15, Vertical Tail Spar Box Structure
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Figures 97 and 4§

L Spar hox

) Root Fittings

° Upper Gearbox suapport Asscmbly

° Lower Gearbox sapport Frames

° Upper Closure Rib

° Steps and Handholds
Hardpoints for attachine hardware are provided for the following:

° Tip Fairing

° Leading Edge

°® Trailing Edge

. Tail Rotor Brace (2)
The basic structure of the box is a graphite/Kevlar/epoxy filament wound
honeycomb sandwich. The skins are £38-degree helical windings over a
0.250 inch thick Nomex honeycomb core.  Graphite/epoxy spar angles (07
145° plies) are incorporated in the four corners between the inner and outer
skins. The helical windings provide the necessary torsional strength and

stiffness, with the corner spar angles supplying bending strength and stiffness,
See the lower portion of Figure 16.
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Figure 16, Vertical Tail Cross Sections
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The honeycomb sandwich is a balanced structurce with cach skin U, U2 inch
thick, The skins converge to form solid lanunates at the root nting attach
region and at the tip end just below the tip cap. l.ocal skin thickness is
sized to accommodate the local load requircements,  The skin thickness,
including laminae and honeycomb core is illustrated v Figure 17, I the
center of the spar the sandwich is 0. 301 inch thick, ‘The ends taper to
0.060 inch solid laminate,

SEE FIGURE 95 FOR LAMINATE
STACKING SEQUENCE

I MILLED GLASS FIBERS EPOXY

Wt
153 74 e

pe—— L

LWL Wi
\ 228 26 230 36
0 060 ‘ — —~~ 0060
== [}
\ ’ g _MILLED GLASS
N FIBERS EPOXY
-
5(\
0
0.247 0301

Figure 17, Vertical Stabilizer Skin Inickne-=

The leading and trailing edge attachment tees are bondeg to the b s indi-
cated in Figure 16,

The materials used to fabricate the spar box are:
e Graphite Roving: T300, 3000 filament count
° Kevlar Roving: Kevlar-49, 1420 Denicr

® Graphite Fabric: T300, 3000 filament count, cicht harness,
satin weave

® Epoxy resin: APCO 2434/2347

e Core Adhesive: FM 123-5 film adhesive

® Honeycomb Core: HRH-10 -1/4, 0,250 inch thick




The composite vertical tail attaches to the tailboom with the four-piece
aluminum fitting shown in Figure 18. This split fitting attaches to the com-
posite box with HiLok fasteners and carries the bosses for the four

5/8-inch diameter attach bolts, The forward portions of the root fitting also
incorporates the intermediate gearbox attach bosses. The root fitting is
made from 7049-T6 aluminum alloy.

- p—

MATERIAL -
7049-T6
ALUM ALLOY

Figure 18. Root Fitting




The upper gearbox mount shown in Figure 19 consists of three graphite/epoxy
ribs that have aluminum reinforcing bars bonded in, Self-locking anchor nuts
mount the gearbox, The three ribs are connected with a strap to form a
prefabricated unit that is assembled with the winding mandrel and wound into
the spar box structure. HiLok fasteners are also used to anchor these ribs
to the spar box. The lower gearbox supporting rib (Figure 15) is a pre-
molded/graphite/epoxy rib that is bolted in place with HiLok fasteners. An
aluminum reinforcing bar supports the intermediate gearbox.

The materials used for the ribs are:
] Rib Assemblies: Graphite/epoxy: T300, 3000 filament, eight
harness, satin weave,

preimpregnated

E-glass/Epoxy: 1581 glass cloth,

preimpregnated
Adhesive: FM 123-5
e Inserts: 2024-Té6: Aluminum alloy

The upper closure is made from graphite/epoxy - T-300, 3000 filament count,
eight harness, satin weave, preimpregnated.

The steps and handhold are graphite/epoxy tubes fixed on the vertical tail
spar box as shown in Figure 15, That portion extending into the air stream
is elliptically shaped for reduced drag (See Figure 20),

The materials for the steps are:

e Graphite/epoxy: T-300, 3000 Filament count, eight harness,
satin weave, preimpregnated

o  Graphite roving: T-300, 3000 filament count
e Epoxy resin: APCO 2434/2347
The leading and trailing edge fairings attach to flanges that are bonded to

the corners of the spar box, These are T-section flanges as indicated in
Figure 16. They are made from:

e Graphite/epoxy: T-300, 3000 Filament Count, eight harness,
satin weave, preimpregnated




TAIL ROTOR
GEARBOX MOUNT
(ALUMINUM)

RIB (GRAPHITE/EPOXY)

TAIL ROTOR BRACE
ATTACHMENT
(ALUMINUM)

ANCHOR NUTS —

RIB
(GRAPHITE/EPOXY)

~+— CONNECTING STRAP
(E-GLASS/EPOXY)

RIB (GRAPHITE/EPOXY)
TAIL ROTOR BRACE

(ALUMINUM)

Figure 19. Upper Gearbox Assembly
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STABILATOR

The composite stabilator's geometry is:

Area - ftz 33.36

Span - in. 128.0 "
Tip chord - in, 31.85 j
Root chord - (at centerline) - in. 43.2

Airfoil NACA 0018 |
Aspect ratio 3.41

Chordline for zero sweepback, 50

percent

The composite stabilator is shown in Figure 21, It has the same outside
contour as the AH-64A metal stabilator, but with added leading edge sweep-
back. The pivot point and actuator locations are changed to facilitate
hinging the stabilator to the tailboom instead of to the vertical tail. This
change permits decoupling of the vertical tail/stabilator dynamic responses
and also allows the hinge spacing to be increased, thus reducing the hinge
loads. An improved actuation system replaces the prototype helicopter's
tandem electric actuator by a pair of side-by-side hydraulic actuators
attached to the tailboom aft bulkhead. The hinge is also part of the aft
bulkhead,

The stabilator is made up of the following structural members (see Fig- }
ure 99):

) Skins (left, right, and center)

® Spars (forward and aft)

° Ribs (left and right, 3 each)

® Nose ribs (left and right, 3 each)

® Reinforcing ribs (left and right, 1 each)

¢ Tip closures (2)
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Attach details are:

™ Pivot/actuator fitting (left and right)
° Bathtub fitting (left and right)

In addition, the stabilator is protected from rocket debris by a polyurethane
cover.

The skin is made of four pieces, (left, right, upper center, lower center).
The skin provides the torsional stiffness and shear tie for the spars, The
spars provide axial bending stiffness and resist air loads and diagonal
tensions loads caused by thin skin shear buckling. The left and right-hand
skins are premolded to the airfoil shape, fit over the spar/rib structure,
and are bonded to it., The skin is reinforced in the center section for
torsional requirements. The total skin thickness is 0.030 inch with an
additional 0. 030 inch thickness in the center box area between the root end
ribs.

The skin material is:

° Kevlar roving: Kevlar-49 roving, 1420 Denier

e Epoxy Resin: APCO 2434/2347
The forward and aft spars consist of C-section beams. Spanwise bending
stiffness is provided by unidirectional fiber in the caps oriented in the span-
wise direction. The spars are made of:

® Graphite roving: T300, 3000 Filament Count t

e Epoxy Resin: APCO 2434/2347
The ribs are molded as three element boxes with flanges all around their
peripheries. The portions of the ribs that lie between the spare are
graphite/epoxy, while the leading and trailing edge portions are Kevlar/
epoxy. The materials used to make the ribs are:

® Graphite Roving: T300, 3000 filament count

° Kevlar Roving: Kevlar-49 Roving, 1420 Denier

® Epoxy Resin: APCO 2434/2347
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The tip closures provide a shear rib at the outboard end of the airfoil and
serve to shield the edges of the skin and the substructure from environmental
effects. The material is the same Kevlar/epoxy used for the skins,

The pivot/actuator fittings are two aluminum alloy fittings attached to the

stabilator assembly with stainless steel bolts. The pivot holes are bushed
with TFE-lined stainless steel bushings., The materials for these fittings

that are shown inFigure 21 are:

. Fitting: 7049-T411 aluminum alloy

° Bushing: CRES steel, TFE coated
Rocket debris protection is provided by a polyurethane cover 0.050 inch thick
extending over the outboard 23.5 inches of the span on both sides, This

material wraps around the leading edge and covers the forward five inches
of the upper surface and all but the aft six inches of the lower surface,

ENVIRONMENTAL PROTECTION

Extensive investigation during the advanced composites programs has estab-
lished that there will be no corrosion problem with the composite components.
However, suppression of galvanic corrosion between aluminum fittings and
adjacent graphite/epoxy laminates requires the use of a layer of E-glass/
epoxy for electrical isolation at all interfaces,

All steel parts are cadmium plated and all aluminum parts are chromic acid
anodized. All fasteners are corrosion-resistant steel, Final painting consists
of a urethane top coat over a suitable primer for protection against ultraviolet
radiation.

Figure 22 shows how lightning protection is provided by a grounding system
that extends from a lightning collector in the tip cap of the vertical tail, down
through the aluminum ground plane for the antennas in the trailing edge fair-
ing of the vertical tail, and out through the tailboom's aluminum frame at

Sta 547 and the tail landing gear strut. A grid of aluminum foil around the
leading and trailing edges and tip to two discharge wicks on each stabilator
tip and through a jumper into the aluminum rear frame in the tailboom
provides lightning protection for the stabilator.

49




uotjdajordg durujydry ‘7z 2andig

1N4H1S AvIHNING NNNINNTY
T133IHM TIVL LYS V1S

av3IHIING
WNNINNTY
Ol y3dwnr

SHVJS JLIHdVHD OL
SLI3INNOD 3dVL WNNINNTY

SHIIM

JOHVHISIO

JlLviS
INVI4
anNnouo

YNN3LNV

INVd
aNnouos JONIH SSOHOV
VNNILNVY dVHLS ONIONOS

Ol H3IdWNNr

aoy SNINLHOIT WNNIWNTY

50




W

WEIGHT ANALYSIS

The weight analysis for the CTS is given in detail in Table 2 per MIL-STD-

1374 Part UI for the three components -- stabilator, vertical tail, and tail-

boom. The calculations for these weights are based on released drawings
(84 percent by weight), and on pre-release drawings fo~ the remaining
details and installation., The component weights are . ..imarized .n Table 3
and are compared with their counterparts in the basic metal helicopter.
The weight saving is shown to be 72,4 pounds. ]

Two adjustments are needed, First, a calculation for a preliminary layout
of the metal-to-composite splice joint at Sta 370 shows an incremental
weight increase of 7.6 pounds relative to a structure without a manufacturing
break at this point. Second, the CTS is designed to accept the Composite
Flexbeam Tail Rotor (CFTR) that increases the load on the tailboom by six
percent relative to the metal tail rotor. A weight analysisof a strengthened
metal tailboom to accept this load indicates a weight increase of 6.0 pounds
is needed. Hence, the total adjustment for the Sta 370 splice and the CFTR
yields an overall weight reduction of 70.8 pounds for the CTS versus the
metal tail section modified to accept the CFTR,

The longitudinal center of gravity for the AH-64A equipped with the CTS

is given in Figure 23. For comparison, the normal envelope portion of the
chart for the helicopter with the metal tail section is shown as a dotted line
in Figure 23, Note that the lighter weight CTS results in a m« re forward
center of gravity for the vehicle,
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TABLE 2. CTS WEIGHT ANALYSIS

Basis For
Current Data

% %

Original Current E c

Goal Status s A

T L

C
Stabilator - Basic (58.0) { 52.0) (18) (82)
Upper - Cover 3.0 3.2 0 100
Lower - Cover 3.0 3.2 0 100
Spars 7.0 15.2 0 100
Interspar - Ribs 4.0 6.0 '] 100
- Chordwise Stiff. 0.0 0.0 0 0

Leading Edge - Cover 7.0 3.6 0 100
- Ribs 2.0 1.4 0 100

- Fasteners 1.0 0.0 0 0

Trailing Edge - Cover 14.0 3.6 0 100
- Ribs 4.0 0.6 0 100

- Fasteners 2.0 0.0 0 0

Fitting - Hinge (pivot) 5.0 8.0 100 0
- Actuator 2.0 1.0 0 100
Attachments - Misc. & Fasteners 2.0 2.3 50 50
Tips 2.0 0.0 0 0
Debris Protection 0.0 3.8 0 100
Lightning Protection 0.0 0.1 0 100
Vertical Tail - Basic ( 79.0) ( 90.0) ( 22) ( 76)
Cover 26.0 0.0 0 0
Spar Webs 21.0 0.0 0 0
Spar Box Assembly 0.0 34.2 0 100
Interspar Ribs 10.0 9.5 26 74
Leading Edge - Cover 7.0 11.5 0 100
- Ribs 2.0 2.2 0 100

- Fasteners 1.0 2.5 0 100

Trailing Edge - Cover 3.0 4.3 1] 100
- Ribs 1.0 0.6 0 100

- Fasteners 0.0 2.1 [} 100

Attachments - Tail to Fuselage 2.0 12.0 100 0
- Miscellaneous 1.0 3.0 100 0

Tips 3.0 3.5 0 100
Steps & Grips 2.0 2.0 100 0
Tail Rotor Gear Box Fittings 0.0 2.6 0 100
Tailboom - Basic (117.6) (139.5) {(12) (88)
Bulkheads + Frames 16.0 27.2 48 52
Joints, Splices + Fasteners 8.6 3.4 70 30
Monocoque Sandwich 89.0 100.4 0 100
Intercostals 0.0 4.4 0 100
Stabilator Actuator Fitting 2.0 0.0 o 0
Jack Fitting 2.0 1.2 100 0
Steps + Grips 0.0 1.4 0 100
Tail Rotor Fairing Angles 0.0 1.5 0 100
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TABLE 3. CTS WEIGHT STATUS SUMMARY

Metal Composite Weight

Weight Weight Savings ‘
Item {lb.) (1b.) (1b.)
Stabilator 73.1 52.0 21.1
Vertical Tail 120.0 9G6.0 30.0
Tailboom 160.8 139.5 21.3
Totals 353.9 281.5 72.4

Estimated increase in weight at
fuselage station 370 to install
CTS (reduced weight savings) - 7.6

Net Weight Savings 64.8

Estimated weight increase of metal
tailboom to accommodate CFTR + 6.0

Adjusted Weight deings 70.8
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RELIABILITY ASSESSMENT

Reliability assessment of the CTS is based on the results of a preliminary
systemized Failure Modes, Effects, and Criticality Analysis (FMECA), a
review of program requirements, and a review of reliability studies con-
ducted for other composite programs at HHI, The analysis considers the
degradation of reliability that may occur as a result of manufacturing defects,
storage, environmental conditions, in-service conditions, and production
techniques., Specific areas of concern include delamination and disbonding,
porosity and voids, resin rich and resin starved areas, internal geometry
and bond lines, resistance to impact, and defects in metal attach fittings.
These studies show that the hazards imposed by air vehicle operation and
maintenance are the primary reliability considerations, Detection through
such nondestructive inspection techniques as X-ray or Bondoscope permits
these problems to be detected and cured.

Cracking occurs primarily at fastener interiaces and is easily detectable,
The CTS is designed to use a minimum of fasteners and the composite
structure is adequately designed to accept fasteners. Degradation due to
limited cracking is expected to be minor,

Resin-starved/resin-rich areas can contribute to structural degradation

and loss of effective performance. Resin starvation can fail to support the
filaments properly and result in delamination; this can result in geometric
misplacement of the fibers to cause unanticipated load paths. Resin rich-
ness means either that not enough filaments are present to carry the loads
or that the resin/filament matrix is oversized and, hence, out of its desired
position in the structure -- in either case structural integrity is jeopardized,
These conditions occur only during manufacturing not during in-service
operation and are discovered during nondestructive evaluation. A resin-rich
or resin-starved defect is not considered to be a failure mode in the FMECA
because it is a failure mechanism (cause) of a delamination failure mode.

Ultraviolet light, rain erosion, moisture entrapment, extreme temperatures,
snow, wind, and lightning contribute greatly to reliability degradation. The
resin matrix material degrades considerably when exposed to ultraviolet
light, Protection from ultraviolet light is provided by a suitable coating of
the exposed skins, Although moisture entrapment cannot be avoided, the
composite tail section is designed for the worst case condition as is true
with the rest of the environmental extremes. Extremely rare incidents such
as heavy hail or hurricane velocity winds are not considered since these
environments should be avoided when operating the air vehicle.
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The significant contributors to reliability degradation of the CTS are hazards
induced during air vehicle operation and maintenance. These include thermal
cycling, shock, vibration, aircraft fluids, rotor downwash (induced airborne
particles and FOD), rocket debris, rough handling, impact with terrain
objects, maintenance, and contact with work stands and ground vehicles. "
Design allowables may compensate for some of these hazards and the

resultant degradation may be readily visible. However, the resultant

degradation of those hazards, not readily visible, can only be determined by

an effective and adequate nondestructive evaluation or nondestructive test

technique. Based on results of previous testing and for equivalent material

thickness, the order of damage tolerance is as follows. Fiberglass is the

most damage tolerant, Kevlar is next best, and graphite has low damage

tolerance. Sandwich construction has poorer impact resistance than mono-

lithic construction and tends to suffer reductions in strength due to subsurface

damage. Nomex sandwich construction is protected by Kevlar/graphite facing

sheets on the composite tail section and Nomex has shown to have better

damage tolerance than aluminum. Finally, simple field-type repair methods

have been shown to be effective for many types of routine impact damage.

At the time that the program was terminated, a Failure Modes, Effects,

and Criticality Analysis (FMECA) had not been made for comparison with

the metal empennage of the basic AH-64A helicopter.




STRUCTURE VERIFICATION TESTS

e At o

Tests were made to determine the properties of the particular laminates
used in the tailboom, vertical stabilizer, and stabilator of the CTS. The
testing included tension, compression, shear, and bearing of typical con-
figurations found in the CTS to verify strength, elasticity, and strain
allowables.

Two types of test specimens were investigated: helically wound tubular
specimens used for tension, compression, and torsional shear tests and flat
panel specimens laminated from wet-filament-wound broadgoods with fabric
reinforcing plies. Test fixture end reinforcement was applied to the wet
specimens at each end. Specimen identification, material description, and
type of test as well as number of specimens are presented for tubular tension
and compression specimens in Figure 24 and Table 4, for tubular torsion
specimens in Figure 25 and Table 5, and for bolt bearing test specimens in
Figures 26 and 27 and Tables 6 and 7. All of the specimens were wet-
filament wound using Kevlar-49 and Thornel 300 graphite fibers with APCO
2434/2347 (7.5 PPHR) resin. The fiber volume ratio was 0.50 for all
specimens,

All specimens were tested in a room temperature (70°- 75°F), dry condition.

Each tension and compression tubular specimen was installed in a test

machine as shown in Figures 28 and 29 in a manner to prevent any bending

loads from being applied. (A stabilizing bar was installed in the compression

specimens to prevent buckling.) A two-inch extensometer was mounted to

each specimen to measure deflection. A load-deflection strip-chart recorder

monitored the applied load and deflection. The load-deflection curve was

used to calculate the modulus of elasticity of the specimen. The load was

applied at an average rate of 0,05 inches per minute for the moving head of

the test machine, All specimens were tested to failure, k

Each tubular torsion test specimen was installed in a test fixture designed

to apply shear loads to the test section of the specimen as shown in Figure 30
with a stabilizing bar installed to prevent buckling. Holes were drilled in
the end pieces of the specimens to firmly attach them in the test fixture,
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Figure 24, Tension/Compression Specimen
TABLE 4. TENSION/COMPRESSION SPECIMENS
Specimen Layup Total
No. Component Composition Thickness Condition
I-1 Stabilator [£45°/0° /+45°] .020/.020/.020 | Tension
Skin Kevlar (KV) . 060 Compres-
sion
1-2 Vertical Tail| [£30°/90°/+30°] .020/.020/,020 T
Skin Graphite (GR) . 060 o
1-3 Stabilator & t45°/0‘1’2/t45° .014/,085/.014 T
Vertical Tail| GR 113 C
Spar Caps ‘
1-4 Tailboom :t45°/0i’2/:b45° .014/,083/.014 T
GR/KV 50-50 111 C
I-5 Tailboom [90°, (£13, 5°),,90° . 007/.038/. 007 T
GR/KYV 50-50 . 052 C
I-6 Tailboom (90° (£8°)2 907 |.007/.032/.007 T
GR/KV 50-50 . 046 c
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Figure 25, Torsion Test Specimen
TABLE 5. TORSION SPECIMEN
Specimen Layup
No, Component Composition Skin Thickness
II-1 Stabilator [+45°/0°/+45°) .020/.020/.020
Skin KV . 060
11-2 Vertical Tail] [£30°/90°/+30°] .020/.020/.020
Skin GR . 060
11-3 Tailboom [90°, (13.5°),, acC | .0066/.0382/.0066
GR/KV 50-50 .C51
I1-4 Tailboom (90°, (£8°),, 90° .0066/.0320/.0066
GR/KV 50-50 . 0452
I1-5 Tailboom (90°, (£9°)2, 90°] .010/.032/.010
GR . 052
-6 Tailboom [90°, (£15°),, 90°] .010/.034/.010
GR .054
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(8] 0030 (3 PLIES) GLASS SHIM

THIS AREA ONLY IN BETWEEN JOINT

9.75
525 — ] .
t 250 (4 PLILS:
l | — {150 @ PLIES)

%"

{- —|— e @Q 125

b o 0625

b

[ 600 — -———= T

(3) 0.270 27 PLIES)
5.00 (3] 0400 @0PLIES:
02N

o e B il B -~

) I \
B —
@ @ ? 5*\\‘ ?
e
3) L= 50100 (10 PLIES
0.400 (40 PLIES) 0.75 HL 4086 PIN ' a

A
(4] o.100

\

HL 708 COL L AR ] 4660 | B SHEAR (11 T

LAMINATE PER HP 15.42

APCO 2434.2347 EPOXY RESIN

[E] EA 934 NA ADHESIVE ROOM TEMP
CURE

(E] FOR LAMINATE MATERIAL CALLOUT AND
STACKING SEQUENCE SEE TABLES 6 AND ?

(3] 4340 OR 4130 STEEL PLATE (0.100 x 1.25 x 5.00,
HEAT TREAT 150 KS| UTS ’

(3] €-GLASS FABRIC MIL-C-9084 1581 CLOTH
TYPE Vill, CL2, GR A(0.010/PLY)

[2] SAND BLAST BONDING SURFACES PRIOR TO
BONDING

1) INSTALL HI-LOK FASTENERS PER HP 3.2

NOTES:

Figure 26, Bearing Test Specimen Type IlI-1
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Figure 27. Bearing Test Specimen Type III-2.

216 [@o.100 (10 PLIES!

0.100

HL 40-6-6 PIN
o HL 70-6 COLLAR (1] 3r16" D1A) 2620 LB. SHEAR ULT

",
K 0.56 Q
LAMINATE PER HP 1542
APCO 2434-2347 EPOXY RESIN
EA 934 ADHESIVE ROOM TEMP CURE

FOR LAMINATE MATERIAL CALLOUT AND
STACKING SEQUENCE SEE TABLE, 6 AND 7

4340 OR 4130 STEEL PLATE {0.100 x 0.94 x 5.00}
HEAT TREAT 150 KS) UTS

E-GLASS FABRIC MIL-C-9084 1581 CLOTH
TYPE VIII, CL 2, GR A (0.010/PLY)

SAND BLAST BONDING SURFACES PRIOR TO
BONDING
INSTALL HI-LOK FASTENERS PER HP 3-2
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TABLE 6. STACKING SEQUENCE FOR TYPE 111 SPECIMENS

A — . -t

Ply Number Angle Material* Ply 1hic
Pls 90° ) ® 011
Pl4 +45° @ $ UR
P13 +8° ®® 022
P12 +45° @ | .01
P11 90° @) 020
P10 +45° @ 013
P9 90° @ 020
P8 +45° @ 02¢
P7 90° ® 011
P6 +45° O) .02t
Ps5 90° ® 011
P4 +45° ® . 020
P3 +8° IO .022
P2 +45° ® # . 026 |
Pl 90° ® ® .o11 J

*See Table 7.
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TABLE 7. FABRICATION NOTES FOR
TYPE III SPECIMENS

(®) APCO 2434-2347 Epoxy Resin
HMS 16-1115 Type I, CL 1

E-Glass, Roving
MIL-R-60346 Type I, CL 1

T300 3000 Fil Count, Roving
HMsS 16-1163 Type I, CL 1

Kevlar 49, Roving 1420 Denier
HMS 16-1164 Type I, CL 3

T300 3000 Fil Count, Fabric
HMS 16-1163 Type II, CL 1, GRA

Filament wind per HP 15-67

Layup per HP 15-42 ﬁ

OO ® © 0

First Ply goes Against Tool Face

APPLIED LOAD

LN
_
Law

\ e
STRIP CHART _ ]

RECORDER \ " TUBULAR TENSION

EXTENSOMETER 7/ SPECIMEN
}

/ STATIONARY HEAD

Figure 28, Tubular Static Tension Test Schematic

MOVING HEAD (SPEED OF 0.05
INCHES/MINUTE) ’
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STABILIZING BAR

\

MOVING HEAD (SPEED 0.050 IN./MIN)

| STABILIZER PLATE (TYP)

2.00

f

\ TUBULAR COMPRESSION SPECIMEN

NN
S

/7

-

Las

\ STRIP CHART
RECORDER

—_— ] = e e -

EXTENSOMETER

— e - —

H

//// //////—\ STATIONARY HEAD

Figure 29, Tubular Static Compression Test Schematic.

SN NN S SN

LOAD

l TUBULAR SHEAR (TORSION) SPECIMEN

. AN

MOVING HEAD (SPEED 0.050 IN./MIN}

,DIAL INDICATOR

STABILIZING BAR ’

10.00 l GAUGE LENGTH

u
\//////// 7 TR

Figure 30. Tubular Static Shear (Torsion) Test Schematic.




A paype indicator was mounted to the test section of the specimen to measure
angular displacement during testing, A torque arm was mounted to one end
ot the specimen and attached to the moving head of the test machine while the
other end of the test specimen was fastened to the fixed head of the machine.
The torque arm was designed to preclude the application of bending loads to
the specimen, The load was applied to the torque arm at the rate of 0.05
inches per minute as for the other tests with each specimen loaded to failure, v
Angular deflection was measured at periodic intervals during the test. The

bolt bearing test specimens were tested in a manner similar to the tension

specimens except the deflections were not monitored.

A total of 64 specimens were tested, Test results are given in Tables 8, 9
and 10 for tension/compression, torsion, and bearing tests respectively. The
dimensions, ultimate load, ultimate stress, and modulus of elasticity for
each specimen are given.
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TABLE 8. TENSION/COMPRESSION TEST RESULTS

— - e g - . R 1
Spryimen Apphien taa J
} ;
1D, 0. 1. Area l Lo 1 S e i
Type® No. {in. ) (o tin, ) M j‘ theoy 5
4 )| e — ————— . i
-1 H 0. 491 1. 1o~ .o bevslon ‘ IR # - ‘.
2 0.993 1. 10 0. kn 1 NTRUN .
I
3 0.993 1be Gl i Potae -
| i ‘ i
o i I i
4 0.993 1,104 [{ ' Cong ; BN 1o .
! ! i
s 0.9493 1.1 0,204 i « 1. . j
. )
% 0.9492 1. 10w U, 1ad [ C - [ B
T —
1-2 7 0.99¢ 1. 115 VO T ] T P -
| |
|
[ 0.995 1,114 0. 107 ‘ H it il 5
9 0.9 1111 G. 1w . \
10 Q. 94 s obed B [ERE] .
11 0, 9us olls b 0,204 . 1o
12 0,494 L.1os | u.les « [ Lo o
— . ; . :
Ly oas (IR I N PR ! v | i
1 1,01 1,237 1 s R ¢ P~ ERE -
17 V017 1,235 ‘ ULsee ' ¢ [ Gaem .
__%_. R 4 . + [
i-4 19 0,90, 1. 20x O e T < ; 1-030 41
|
|
20 0. 34 1,261 IR l‘ ¢ N TR T + e -
! !
21 0, e | I U 0 o ¢ 1- o 0T -
I
22 Q. s 1,20~ (DR } < Todat R -
| |
23 (AR L2205 ERRER | ¢ [T 45 s -
i
24 0, 9a4 | RIE LR ¢ o= N -
| L
1-5 25 1.01% 1.073 0. 0900 1 TTeo > s 1. - ‘
2t [ 1.o70 [UNVESI i rsind ~lode i
|
{
27 1.014 1.074 0. 0+04 1 } Vo - 1
28 1.018 1,07 U. 0480 « SToe o
29 1.020 1.07e 0,002 « 4007 : !
. ' i
! 1
30 1.020 1,077 0,030 [y nl- U : F I ]
: e ] |
I-6 31 1.01% 1. 107 0. 14 { i (SR | Tt ST | :
32 1.018 1. 103 0,142 ! 10840 ! s ‘ R !
33 1.019 103 | o140 ! 1o feale SRR oy
' {
34 1.020 1.104 0.140 ¢ 11800 i : ‘
35 1,019 1.102 0. 147 & 10700 RIS s T
i i
3¢ 1.01u 1.102 0,13 s a0 AR w
See Table 4, 1
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TABLE 9.

TORSION TEST RESULTS

Specimen
1. D. 0. D. Area Ult. Load G Ult, Stress
Type® | No. (in.) (in. ) (in.2) | f€in. - 1b.) (106 psi) (psi)
11-1 37 1.011 1.125 0.191 1730 1.5 17,793
35 1,013 | 1.125 | o0.188 1700 1.7 17,749
39 1.011 1.125 0.191 1680 1.7 17,279
m-2 | 40 0.996 | 1.108 | 0.185 2650 2.6 28, 589
41 0.995 1.115 0.199 2200 2.6 22,094
- 12 0.996 | 1.114 | 0.195 2400 2.5 24, 491
-3 43 0.994 1.050 0.090 630 0.91 14,079
14 0.993 | 1.050 | 0.091 590 0.90 12,972
45 0.995 | 1.050 [ 0.088 740 0.92 16,613
-4 | 4o 1.018 | 1.100 | 0.136 980 0.65 14,073
47 1.017 | 1.102 | 0.141 990 0.77 13,718
18 1,018 | 1.100 | 0.136 1080 0.73 15,508
11-5 49 1.002 1.134 0.221 2580 0.77 18, 371
50 1001 | ..132 | 0.219 2280 0.69 16,418
51 1.000 | 1.131 | 0.219 2090 0.73 16, 440
52 1.006 | 1.139 | 0.224 2100 0.70 15,973
53 1.006 | 1.129 | 0.206 2120 0.63 14,545
-6 | 54 1.000 | 1.074 | 0.121 1110 1.65 23,078
55 1.000 | 1.076 | 0.124 1020 1.56 20,603
56 1.002 | 1.084 | 0.134 1110 1.54 18,921
57 1.001 | 1.084 | 0.136 1090 1.56 18, 490
58 1.002 | 1.091 | 0.146 1070 1.62 20, 300

“See Table 5.




TABLE 10, BEARING TEST RESULTS
Specimen Thickness (in,) Ult Bearing

Pin Ultimate Stress

Typex* No. Steel Comp. Dia. Load (lbs) {psi)
59 0.10 0.258 3/16 2,475 51, 000

II-1 60 0.10 0.260 3/16 2,535 51, 800
61 0.10 0,258 3/16 2,500 51, 500

62 0.10 0.257 1/4 3,910 60, 900

1mI-2 63 0.10 0.257 1/4 3,625 56, 400
64 0.10 0.257 1/4 3,825 59, 500

*See Figures 26 and 27,
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BALLISTIC VULNERABILITY EVALUATION (HHI-SPONSORED TEST)

A ballistic vulnerability test was undertaken to determine the vulnerability
of the CTS to the 23mm HEI-T projectile threat. The tests on two simulated
tailboom shells determined the suitability of design refinements to be incor-
porated in the CTS., The test articles consisted of two tapered cylindrical
specimens designed to simulate the CTS structural shell from Sta 450 to 547,
Both specimens were of sandwich construction with adapters used to inter-
face with the metal tailboom ballistic test fixture., The specimens were
honeycomb sandwich construction with composite face sheets and Nomex
core. Figure 31 shows the details of construction. Specimen #1 had 0°
graphite/+oC° E-glass/90° Kevlar skins with 200 x 200 aluminum wire mesh
on the outside surface for lightning protection. Specimen #2 had 90°/
+12.5°/90° all graphite skins with no lightning protection. Instrumentation
consisted of a set of photoelectric velocity screens and electronic time
interval counters for determining the impact velocity of the projectiles, and
a load cell to verify load conditions. Both high speed and still photographic
records were made,.

An equivalent hover load was applied to the loading fixture (approximately
1,500 lbs) during and after ballistic impact. Each test specimen was sub-
jected to one Soviet 23mm HEI-T projectile with an MG-25 delay fuze at
1,500 50 ft per sec in an aligned attitude at Station 510. Figure 32 shows
the test setup and impact location,

Specimen #1 shows less severe damage than Specimen #2 due to the excellent
energy absorption capacity of the Kevlar and E-glass, although both speci-
mens are considered successful in defeating the 23mm threat.

Ballistic damage to Specimen #1 consists of a clean entrance hole and three
zones of exit damage. See Figure 33 through 36, Zone 1 consists of an area
of approximately 8 inches in diameter on the back side of the specimen on
the shot line. Damage in this area consists of approximately five holes
ranging in size from one to two inches in diameter. One hole is accompanied
by a torn face sheet approximately 2 by 6 inches. Zone 2 consists of an area
approximately 24 inches in diameter on the back side of the specimen.
Damage in this area consists of a large number of small perforations (less
than one inch in diameter) spaced relatively widely. Zone 3 consists of two
areas approximately 30 by 6 inches along the top and bottom of the specimen
just forward of the center line. Damage in this area is most severe with a
multitude of small (less than one inch) holes accompanied by some local
tearing and delamination of the outer face sheet. Delaminations and tears
range up to approximately 3 by 4 inches, maximum. No large holes or
delaminations appear in the specimen and sufficient cross section remains
intact to assure safe flight.
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200 x 200 ALUMINUM WIRE MESH

0° GRAPHITE (0.017 IN.)
+60° E-GLASS (0017 IN.)

/ 90° KEVLAR (0.006 IN .}
ity P ————

4 /- 3/8 THICK
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|

SPECIMEN NO.1

90° GRAPHITE (0.006 IN.)

+12.5° GRAPHITE (0.024 IN.)
/ /. 90° GRAPHITE (0.006 IN.)

y 4
3/8 THICK
L/ NOMEX CORE

Q@ SYm {

SPECIMEN NO. 2

Figure 31. Ballistic Test Specimen Construction
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BALLISTIC IMPACT LOCATION
£S 510 | [
27 01a.
%
5
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g
/
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Figure 32. Ballistic Test Setup and Impact Location
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Figure 36. Specimen #l -- Rear View With Dan.age

Damage to Specimen #2 is more severe than to Specimen =1. IHowever,
residual strength of the specimen is not reduced sufficiently to prevent
carrying the hover load. See Figures 37 throupgh 40. Referring to the same
zone designations as for Specimen #1, Zone | damage is quite similar with
slightly more delaminations of the skin, Zone 2 damage is also very similar
to that for Specimen #1, although the perforations through the all-graphite
skin are much cleaner due to the brittleness of the graphite tfibers compared
to the Kevlar and fiberglass fibers. Several of the holes are accompanied by
minor local delaminations of the skin. Zone 3 damage to Specimen =2 is
much more severe than Specimen #1, Although the majority of the holes

are smaller, several large holes are present with an areca of approximately
6 by 18 inches torn away from the honeycomb core on the lower side.

)
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Photo 80-10881-13 {

Photo su-10=<].2.0

Figure 3. =pecimen @2 - Front View Wich Do o




Photo 80-10881-25

Figurc 39. Specimen #2 -- Close-up Front View With Damage

Photo 80-10881-23

Figure 40. Specimen #2 -- Rear View With Damage
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LIGHTNING PROTECTION EVALUATION (HHI-SPONSORED TEST)

Preliminary lightning tests were conducted on two graphite/Kevlar 12- x
24-inch flat test panels that were representative of the tailboom laminated
sandwich in the Sta 370 region (see stacking sequence in Table 2 of Figure 9t
The tests consisted of high current tests in which 200 kiloamperes (or as
much as the specimen would pass) was fired through the sample from end to
end, and a 100 kiloampere discharge fired as a restrike into an inboard area
of the specimens.

The test arrangement is shown in Figures 41 and 42. The test results are
summarized as follows:

() A 150,000 ampere cnd-to-end discharge on these flat panels causes
only very slipht damage, but the current is limited by the resistance
of the graphite, An additional discharge across half the panel (to
lower the resistunce) also causes only slight damage. See Figures
and 44,

° A 100,000 ampere discharge inboard on the sections representing a
swept stroke causes delamination of the outer skin of both test
samples over an area approximately ten inches square, The damag

| appears to be severe at first, but it is determined not be flight
i critical. See Figures 45 and 40,

Q& SWITCH

FOIL ELECTRODE USED TO
DISTRIBUTE INPUT AND
OUTPUT CURRENT FLOWS

. H | GH

CURRENT T~ CURRENT
MEASURING TEST GENERATOR
PROBE SAMPLE

Figure 41. Test Arrangement for stationary 200, 000 Ampere Discharpe)




INITIATING SWITCH

O O CONTINUING COMPONENT

200 400 AMP DC

C DELAY TRIGGER GENERATOR
CIRCUIT
| C ]

HIGH DI/DT GENERATOR
26 KA/ 4 SEC RATE OF RISE

MIXING
CIRCUITS —_

yoe 1 T A

HIGH CURRENT GENERATOR
100.000 AMPERES PEAK

INTERMEDIATE CURRENT GENERATOR
3000 AMPERES ~ 4 MILLISEC

WIND TUNNEL QUTLET

j—’
—p
— A
/ CURRENT
TEST SAMPLE SHUNT

Figure 42. Test Arrangenicent for Swept Stroke Tests ' b
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The tests may be summarized as Bivitg Cotae Ji0TIC ot oo Trorn . e s
of 150,000 amperes from cud-to-cnd o the test —o s L an e o
ampere discharges cause extensive delarination of the orter -0 e e ot
contact with the arc. The damaue in the latter case is lens severe e

ballistic damage caused by a 23mm HEI-T projcctile, and this i~ «on=icred
to be non-flight critical. In either case, the damage is considerc: repair-
able, even in the event of a swept lightning strike directly to the tailboon..

It is concluded that beczuse the skin can withstand a swept lightning =trore
(which is noted as an unlikely event) that further protection need not be
provided.




W———-—————-— .

ANTENNA INTEGRATION A
A feasibility ~tudy was conducted tor the =1 FN antens o0 is integrated
into the trailing cdoe of the vertical tail to detoriioe oooi “eration is
compatible with the comiposite tail section. lThe tov fnoi e testing of

the various composite materials proposed tor use, vt inel clel comparative
impedance, patterns, und gain micasurernent= in e P00 cre ency band for
both aluminum and vraphite, epoxy composite tail ~cvotion 10 (v aps. Antenna

impedance, pattern, and gain were measured, lhe porn .o o0 the study

was to determine if the existing FM 51 Vertical ~u v Dyailing Edge

Antenna designed for installation on a metal tail ~coti o0 o0y provide
acceptable pertormance when installed on a cormpo-ite til =cction, and to
provide recommendations for antenna redesivn i1 - 5 irdiceie @ by the study,

The electrical properties of materials were stuadicd 1o ccterniine the con-
struction of the composite mockup to simulate the ¢leciric sl churacteristics

of the tail structure closely and with reasonable o~ coeipres tianal
graphite fabric was used in an epoxy resin wet Levar oo boirically simulate
the semicounducting members of the mockup, Since -7 o0 ol -trength was
not needed for the mockup, part thicknesses werce ¢n-o w0 -imulate the

R, F. properties of the structure, Graphite part< were v 0oc i to 0,06 inch

thickness, thereby limiting the cost of the oo “w1.inc fabrication

sroennite labric use.,
(907, unidirectional graphite fabric, 1-300, 3000 tilu ont oot with 109%

time. This amounts to =ix plies of the unidirection:l

glass fill fiber-., Woven Structures style No. Es - -0
One composite naterial designatea for stady anrte-t w0 o Trstrand
{aluminized fiberclassirKevlar/graphite/epoxy baonaie. Do ciectrical

properties of this candidate are very difficult to analy ¢ wnid test because the
Kevlar dielectric layer separates the two semiconducting lavers, Resistance
measurements were made on the Thorstrand alone and on craphite epoxy
alone. Manufacturer's resistivity data was also obtained. Composite
materials providing improved strength-to-weight characteristics over
alurminum fall in the category of electrically non-conducting (dielectric) or
scmi-conducting materials, whereas aluminum s fuonlv conductive to direct
electrical current (DC) and is known as a good condictor,. Based on these
materials, electrical tests, and the lightning tests, it was determined that
the Thorstrand was not needed for the mockup, and v crapinte and fiber-
glass were selected for its construction.
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For antennas in the VHI frequency region and below, the airframe on which ;
they are installed form a part of the antenna and contribute to its impedance,
radiation pattern, and vain characteristics. The degree to which this is true
depends upon the antenna configuration as well as the airframe configuration
and the physical relation between antenna and airframe. If the airframe is o
highly conductive to the REF energy, these characteristics can vary widely .
when compared to a nonconducting or semi-conducting airframe, ‘

To satisfy the requirements of this study, it was necessary to have two full

scale AH-u4A tail mockaps. Since the trailing edge antenna is designed to

operate on the metal version of the tail section, a metal mockup from the

AH-04A progran: was provided for this purpose. All parts of the tail structure

from Sta 450 aft that are necessary to electrically simulate the AH-64A metal

tail section are included. The composite tail section mockup includes the :
tailboom skin, vertical spar box skin, and the ribs and spars within the
stabilator. Stacking anules and the number of plies are maintained as closely
as possible, The stabilator skin is fabricated of epoxy fiberglass, Additional
parts of the tail scction included in the mockup are tail rotor shaft and gear-
box, vertical rotor aviveshaft, and tail landing gear. The stabilator is
movable in elevation within the +10° to -45° limits, Figure 47 shows the :
AH-04A graphite tail scction mockup installed on the tower/positioner, |
Figure 48 is a schematic of the equipment,

The Vertical Tail Trailine idge (VSTE) Antenna (P/N 7-211122630) is a
folded dipole antenna intcurated into the trailing edge fairing of the AH-64A
helicopter vertical tail, An aluminum sheet metal spar at the forward side
of the antenna and for:m- the 'folded' portion of the antenna element,

Swept frequency impudarce nmicasurements were performed in the 30 to 70 MHz

frequency range of the trailing edge antenna installed on both the aluminum

and composite tail section mockups. These measurements enable a judgement ’
to be made as to the comparative level of difficulty to be anticipated in

impedance matching the antenna to the 50-ohm transmission line in the two

different installation environments. A network analyzer was used to measure

the antenna impedance.

Figures 49 and 50 show thi impedance plots on impedance coordinates of the
Smith Chart, with Scveral Frequency points in the FM band marked, These
impedance plots show that the antenna impedance variation between the two
installations is smuali. A- a1 result, major impedance matching network

compensation is not regiired to provide antenna impedance performance

compatibility on the @ etal and composite tail sections. At most, some cir-

cuit component valte @ w:ues in the matching network may be required.

Antenna impedancr "= ot annreciably affected by changing stabilator position

on the metal moci 1. [
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SOURCE ANTENNA

TAIL MOCK-UP,
ANTENNA INSTALLED \

ANTENNA
" POSITIONER
_ TOWER

‘l_l>_§_l__

HP 8654A SA 1710
SIGNAL GENERATOR RECEIVER
RF CABLE
CONTROL CABLE
FLUKE 1920 A SA 1410
FREQUENCY RECORDER
COUNTER

Figure 48. Radiation Pattern Test Setup.
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IMPEDANCE  COORDINATES —50-OHM CHARACTERISTIC WMPEDANCE
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Figure 49. AH-64A Trailing Edge Antenna on Aluminum Mockup
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Asttt radiation pattern and gain measurements were performed at six

fregoencies in the VHF-FM band on the trailing edge antenna installed on

Bt et Gluminum and graphite tail mockups. The test setup is shown in

e b The radiation patterns are shown in Figures 49 and 50, Each

o tains a gain reference to allow the relative gain of the antenna on '
‘te mockup to be compared to that of the antenna on the aluminum .

mochnp,  No attempt has been made to measure the absolute antenna gain for .

thi+ propram, since relative gain provides the necessary data for comparison.

A5 showen by the patterns, the major difference is found in the 50 MHz pattern

ror the craphite mockup, This pattern contains a deep azimuth null and

c+hibits wach lower gain than that for the metal mockup pattern. This con-

dition i+ not characteristic of this antenna., The deep null can be caused by

& parasitic element located on the mockup forward of the antenna, Since the

cnly part ot the mockup that has this characteristic is the tail rotor vertical

driveshaft, it was removed and the patterns were rerun at one MHz intervals

frov 10 1o 60 MHz, The null remained at frequencies of 49, 50, and 51 MHz,

indicnating that it is not caused by the driveshaft. This pattern and gain

deficievoy is believed to be caused by the test environment,

1

“hoe teot tower contains metal positioner, supporting structure, and connect-

irg abl-. that can act as parasitic elements and are resonant at one or more
‘meqpen-o 5. Resulting radiation patterns can contain both azimuth and

ele- -t v nulls., The azimuth null is evident in the azimuth pattern. An

cte- i il located on or near the horizon can also result in the lowered
sain. vt as shown by the 50 MHz pattern for the aluminum mockup, a

el i+ vt present. The metal skin of the mockup is responsible for this
chenee,  The conducting skin has most likely upset the parasitic arraying

¢ ot~ the test structure to eliminate the null entirely or shift it to a
fregquency not tested when the antenna is installed on the aluminum mockup.

A less <evere pattern deficiency occurs at 60 MHz on the metal model. The
two deeper side nulls and lower relative gain are caused by the parasitic
arraying cffect of the antenna tower structure and the aluminum mockup, t
Antenna pattern tests were run on the metal mockup with stabilator up

10 decrees and down 45 degrees for comparison with the 0 degree position.
Neglivible differences were noted at the six test frequencies. These tests
wore oot repeated for the composite mockup because the less conductive
“tah e g raphite spar/rib -- Kevlar skin) is anticipated to cause an even
NN B B S

Sreensoe smmpedance data for both mockup installations shows only minor o
atens o irpedance variation between the two mockups. Impedance tests h
« o o<neox that antenna impedance is not appreciably affected by changing
:t- 1t r position, Hence, major impedance matching compensation is

nay res ired,




The comparative gain performance of the trailing edge antenna instilled on

the two mockups is quite favorable as Figures 51 through 56 showv,
out of the six test frequencies, the gain difference is 2 dB maxiniur...

two remaining test frequencies, the gain varies 6 to 8 dB due to the ¢ifects

of the test environment.

for the #1 VHF-FM antenna.

It was concluded that this trailing edge artenn=z
installed in the graphite/epoxy tail section meets the Contract rcquirer: ents
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MANUFACTURING TECHNOLOGY REFINEMENT

WET FILAMENT WINDING METHODOLOGY

The previous work that HHI and FSI had accomplished in the fieid of
advanced composites primary structures was primarily in the field of the
wet filament winding (WFW) cocure process. The CTS MM&T program was
structured to continue the use of this process to the greatest extent possible,
and refine it for the special requirements of the three CTS components.

The WFW process is summarized in Figure 57. This figure shows how bands
of rovings are laid onto a rotating mandrel along geodesic paths until the
entire surface of the mandrel is covered with a layer of filaments oriented in
a + angle pattern. This process can lay filaments onto a mandrel at any
angle between approximately +5 degrees and 90 degrees relative to the axis
about which the mandrel rotates. Because the roving band follows a geodesic
path to avoid slipping, the angular orientation is constant * angle from end to
end on a cylindrical mandrel. But it is a variable from end to end if the
mandrel is conical (small £ angle at the large end to large * angle at the
small end). Each end of the mandrel has a suitably shaped dome for securing
the filaments and guiding them smoothly as they turn around to make the
reverse pass along the mandrel. It has been demonstrated that the mandrel
need not have a circular cross section — rectangular and triangular cross
sections are readily wound.

The band of wet rovings is created by passing a number of dry filament

rovings (approximately 16 in number) through a resin impregnator such as

that shown in Figure 58. It meters resin into the filaments to achieve a

fixed fiber volume ratio. All of the filaments may be alike, such as graphite,

or they may alternate, for example graphite and Kevlar, to form a hybrid

composite. A dispensing eye whose travel along the mandrel is geared to !
the rotation of the mandrel guides the band of wet filaments onto the mandrel

at the desired angle.

The tailboom and the vertical tail spar of the CTS are approximately
cylindrical in shape and so are prime candidates for filament winding. The
stabilator skin is also appropriate for WFW since its stacking sequence is
90/#45/90 degrees (90 degrees being the chordwise direction) and can be
wound on a cylindrical mandrel, cut off, and formed to shape over an
airfoil-shaped mandrel. With the basic concept of WFW being well
established, the primary manufacturing development work for the CTS was
the refinement of the details of how to wind each component.
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TAILBOOM

The tailboom is a sandwicn wall, hollow cone with the honeycomb filler
deleted at both ends of the structure to make the walls a solid laminate in
these regions. The configuration of the mandrel on which the tailboom
would ve wound is indicated in Figure 59. From Sta 370 to 450 the diameter
tapers and the cross section varies smoothly from an essentially rectangular
shape at the front to a circle at Sta 450. It is a circular cone between
Stations 450 and 529, and then is cylindrical to the end of the tailboom. The
shape of the end dome on the large end of the mandrel is critical for guiding
the filament turnaround and also to guard against the +8 degree filaments
bridging over the flat region on the top of the forward end of the tailboom.
The mandrel's geometry was worked out on the full-scale toolproofing
mandrel shown in Figure 60. (This was lightweight fiberglass mandrel
adequate for the development work but not suitable for CTS fabrication.)
Figure 61 shows the removable segment that aligned the four intercostals
that lie in the aft end of the tailboom, and the end domes. The ring frames
that are centered on Sta 532. 33 are clamped between the right end of the
mandrel shown in Figure 60 and the left end of the slotted mandrel shown

in Figure 61. The three ring frames (Sta 387,00, 531,23, and 533, 43} and
the four intercostals are hand layups., They are made in metal female
molds to provide accurate contours for matching the interior of the tail-
boom, using silicon blocks to supply the molding pressure. This technology
was considered to be well enough understood that it was not necessary to
undertake a special manufacturing development program.

FINISHED TAILBOOM LENGTH

|

STA 450 STA 531 STA 533 TO 547
STA 370

Figure 59, Taiivoom Mandrel Geometr,




END DOME

Figure o0, Tailboom Mandrel - Main Section (Toolproofing)

STA 533 STA 547

REMOVABLE SECTION

/ END DOME

Figure 61, Tailboon Mandrel - Removable Sections
{Toolprooting)
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VERTICAL TAIL SPAR

The structure of this spar is similar to that of the tailboom - solid laminate
walls at the ends and sandwich wall in the center. The major difference is
that its periphery is smaller, and its cross section is generally trapezoidal
in shape. This spar, too, has frames for the tail rotor gearbox support
wound into the spar.

A full-scale toolproofing mandrel was made of fiberglass and was used for
determining the winding procedure (see Figure €£0). The development work
included determining the manner of holding the composite frames in place in
the mandrel, developing the configuration of the end domes, and determining
how to remove the mandrel from the cured spar box. Figure o2 shows the
results of winding on an early, unsatisfactory end dome configuration. Note
how the filaments are spread in an unacceptable manner.

The frames that go into the vertical tail spar were proposed to be made in
female metal molds with silicone blocks for pressurization. This technology
was considered to be well enough understood that toolproofing studies were
not needed.

STABILATOR

An early stabilator configuration had two spars, four ribs, and a bead-
stiffened skin. A tooling development study was made of the skin which 1is
shown in Figure 63. HHI had previous experience with a beaded skin for a
composite stabilator for the OH-58A in which a flat, wet skin was worked
onto an airfoil-shaped mandrel that had ridges to form the beads. While
this was successful for the small size of the OH-58A, it was determined to
be inappropriate for the AH-~64A stabilator because of the size, and because
of the filament distortion that was caused by forcing the flat skin to form
around the deep beads. A second step, which is shown in Figure 03,
consisted of forming beads separately and cocuring them to the skin that was
draped over a single curvature mold. Based on the toolproof skin, this toc
appeared impractical from an overall skin stability standpoint and the design
concept was changed to the spar/rib/skin structure described in the Design
Refinement section. The technology for forming the spars and ribs in
female metal molds with silicone blocks for pressure was considered well
enough known not to need special development.
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UNACCEPTABLE FILAMENT SPREADING

DESIRABLE FILAMENT POSITIONING

Certical Tail Spar Winding Pattern Study
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Figure 63. Bead-Stiffening Study for
Stabilator Skin

RESIN CURE CYCLE

HHI and FSI recommended that Applied Plastics Corpor.::
resins and hardeners be used as the epoxy matrix for ti. }
gtructure: ‘I

® 2434 — epoxy resin
o 2347 - 300°F cure hardener

° 2340 - room temperature cure hardener



The 300°F cure hardener, 2347, would be used for all filament winding of
major structural elements. The 2340 hardener would be used for small,
noncritical parts. The 2347 hardener is formulated to have a 24-hour pot

life at room temperature. This tirne can be extended to 72 hours if stored at
temperatures below 40°F, and to two weeks if stored at 0°F,

The cure cycle for the APCO resins has been determined through evaluation
tests to be as shown in Figure 64. The Phase [ cure is analogous to
""B-staging'' in conventional prepregs. This cycle rigidizes a component by
partially cross-linking the resin so that the component is rigid enough to be
handled, mounted in winding mandrels so wet filaments may be wound over
it, or positioned in assembly fixture for final assembly by cocuring.

The 'final assembly by cocuring'' cycle that goes to 300°F raises the glass
transition temperature above the range of normal operating temperatures for

strength at elevated temperatures, and produces a structure that is free of
micro-cracking.

FINAL ASSEMBLY BY COCURING

150

MOLD OR OVEN TEMPERATURE — °F

100
PHASE | CURE

50 1 1 1 I L 1 ]
0 1 2 3 4 5 6 7 8
TIME — HOURS

Figure 64. Resin Cure Cycle
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FABRICATION REFINEMENT

At the time that the program was terminated, no production tooling had been
built. The concept and approximately 60 percent of the drawings for it had
been completed. The three components of the CTS were to be built on
aluminum tooling to fulfill the requirement that the tools be satisfactory for
fabricating a minimum of 50 shipsets of the CTS. The jig for assembling and
aligning the three CTS components as an assembly was to use the tailboom
winding mandrel as the base, with jigs and fixtures added to support the
various components for bonding or bolting them together.

TAILBOOM TOOLING

The proposed tailboom mandrel is shown schematically in Figure 65. It
consists of five major parts, plus two clamps to lock it together. The main
section is generally conical in shape and has a shaft extending out of each
end. It is shaped to the inside contour of the tailboom from Sta 370 to 429
and is an aluminum monocoque structure stiffened with bulkheads and
longerons. The shafts are supported by the two bulkheads nearest to each
end. The shafts and the bulkheads are perforated so that hot air may be
circulated inside the mandrel while the resin cures in the oven.

The large end turn-around dome slips over the shaft of the main mandrel and
is pinned to it so they will turn together. A wedge-type clamp anchors the
dome to the shaft. The dome is contoured to guide the filaments smoothly as
they leave and reapproach the mandrel, and to prevent bridging of the
filaments across the flat spot on the mandrel. The dome has a channel all
around it where it touches the main mandrel to serve as a cutoff guide for
trimming the cured tailboom. This channel is to be fiiled with plastic foam
during the winding process to present a smooth winding surface.

The cylindrical segment adjacent to the small end of the main mandrel slips
over the shaft, is pinned to the main mandrel, is held against the main
mandrel by the small end dome, and is locked to the shaft by a wedge lock at
the outboard end of the end dome. This cylindrical mandrel is spaced away
from the end of the main mandrel far enough to enclose the two graphite/
epoxy frames that are bonded together as an assembly with aluminum tooling
blocks between, and are centered at Sta 532,.33. The tooling for this
assembly is indicated in Figure 66. The cylindrical section of the mandrel
has four lengthwise channels formed into its surface to accept the four
graphite/epoxy intercostals that lie in the aft end of the tail boom. The end
dome has a channel around its periphery where it touches the cylindrical
mandrel to serve as a cutoff guide. This channel is filled with foam to
provide a fair surface for winding.
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Figure 66, Frame Assembly Fixture
Schematic

The filler ring indicated in Figure 65 is a removable, taperzd aluminum ring
that fits closely onto the main mandrel and is shaped to the tapered aft end of
the honeycomb filler. This ring must be able to slip off of the aluminum
mandrel so that the cured tailboom will not be mechanically locked to the
mandrel,

The graphite/epoxy frames at Sta 387.66, 531.23, and 533.43 and the four
graphite/epoxy intercostals are formed in matched metal dies using trapped
silicone rubber to furnish the molding pressure during the cure cycle.
Figure 67 is a schematic cross section of such a mold. The design shows
the Sta 533.43 frame and the intercostals attached to each other by HylLoc
fasteners. This subassembly is located in the mandrel as the mandrel is
being assembled.
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Flat-pattern metal templates are provided for cutting out the honeycomb
filler for the sandwich portion of the tailboom, and for the individual sheets
of prepreg material that are laid up to form the ring frames, intercostals,
and tailboom skin reinforcements. Metal jigs that key to the mandrel serve
to locate the reinforcements.

A conventional router is set up to bevel the ends of the honeycomb panels.

A wet filament winding machine similar to the one shown in Figure 68 is used
to wet filament wind the tailboom. This machine takes dry composite
rovings, impregnates them with a metered amount of resin, and winds them
onto the mandrel at the spiral angles required by the design.
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Aluminum male molds (Figure 69) are used to lay up prepreg material to
form the angles that attach the tail rotor driveshaft cover.

COMPOSITE ANGLE
\\

VACUUM BAG \
s B
. /// "..
METAL MOLD s oy o)
<A ‘s
7/ ;/v B v % -..‘
S / :
S 7 d
/ ’// e
Y. /é 9 ’ A
Sy ,»
Ve - o e
’ ey ! ' LT
s ,r/// /',/'
AN L ' / ,
// “1F TAL PIANO HINGE
{OCURED TO ANGLE)

HINGE-LOCATING: "t

Figure ©9. Angle Mold Schematic

The proposed sequence for fabricating the composite components of the
tailboom is laid out in Figure 70. It begins with the fabrication of premolded
frames, goes through filament winding, curing, and subassembly of miscel-
laneous parts. From this operation it goes on to final assembly that is
described below.

VERTICAL TAIL TOOLING

The mandrel for the hollow box structure of the vertical tail spar is the
same in concept as that for the tailbooni, except that it has a trapezoidal
cross section. See Figure 71. The main part of the mold is an aluminum
monocoque box with a shaft extending from each end. This mandrel is
formed to the inside contour cf the spar box. An end dome that is shaped to
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perform the filament turnaround function and guide the filaments off of and
onto the four-sided mandrel slips over the extension shaft at the big end of
the mandrel. It is pinned to it to force them to rotate together and is
secured by a wedge-type clamp. The tip end portion of the mandrel slides
over the main mandrel's extension shaft and is pinned to it. A suitable end
dome is mounted beyond this portion of the mandrel and is attached by
another clamp. The tip-end portion of the mandrel is spaced away from the
upper end of the main mandrel to allow insertion of the upper frame sub-
assembly so that it may be wet filament wound into the vertical tail spar.
Provisions are made for keying this subassembly to the mandrel.

The five composite frames (three upper frames to support the tail rotor
gearbox and two lower frames to support the intermediate gearhox) are
formed in matched metal molds with trapped silicone rubber furnishing the
molding pressure.

The three frames that support the tail rotor gearbox are formed into an
assembly that goes into the spar box mandrel. A three part wash-out mold
locates the three frames while a prepreg shell is wrapped around them and
cured. See Figure 72.

CONNECTING SHELL WASHOUT MANDRELS

ATTIHITTTTERRR R VCARATV ARG AT LR RN VR

7
200 ///////////<</// 0227770

I

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\‘ SUREARRREANMANARARANAANANANA NN

STEEL HARDBACK

GEARBOX SUPPORT FRAMES

Figure 72. Frame Subassembly Tool Schematic
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Flat pattern metal templates are used to cut out the honeycomb filler for the
spar box, and for the laminates that make up the frames, doublers, and
fairings.

A routing fixture is clamped to the spar box and the top and bottom ends of
the box are cut to shape. A support fixture holds the spar box and provides
jig points for positioning the two lower bulkheads, and the four aluminum
lower attachment fittings. These are held in place while HyLoc fasteners
secure the components. A conventional milling machine faces off the
attachment lugs and precisely bores holes in them for the vertical tail
attachment bolts.

A female metal mold is used to form the vertical tail's tip cap, and contains
appropriate keys for locating the navigation lights, radar warning antennas,
and lightning protection strip. It is shown schernatically in Figure 73,

The trailing edge fairing is a purchased part that contains communications
antennas and is furnished by the antenna subcontractor. The leading edge
fairing is taken unchanged from the prototype vertical tail.

A closed cavity metal mold with silicone rubber pressurizing blocks is used

for forming each of the T-bars that are placed at the corners of the spar box
for attaching the leading and trailing edge fairings. Figure 74 is a schematic
cross section of such a mold.

The T-bars are bonded to the four corners of the vertical tail spar in a
bonding jig similar to that shown in Figure 75. Trapped silicone rubber is
used to supply the bonding pressure.

Figure 76 shows the proposed sequence for fabricating the vertical tail spar

by the wet filament winding process. This spar assembly goes into the CTS
final assembly process as described below.

STABILATOR TOOLING

The stabilator skin is wet filament wound on a cylindrical aluminum man-
drel (Figure 77), cut off, and cured on an aluminum male mold shaped to the
airfoil contour as Figure 78 indicates.

The spars and ribs are laid up in matched metal molds with silicone rubber

pressurization in a manner similar to that described for the tailboom
frames in Figure 67.

111




Figure 73. Tip Cap Mold Schematic
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Figure 75. TeBar Bonding Jig Sche
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The tip caps are laid up on metal male mold as shown in Figure 79.

COMPOSITE TIP CAP
VACUUM BAG

METAL MOLD

Figure 79. Tip Cap Mold Schematic

The stabilator's interior structure is assembled in a fixture that locates the
spars, ribs, and tip caps. It includes clamping devices to apply bonding
pressure where the ribs and tip caps bear against the spar. The stabilator
final assembly jig (Figure 80) is basically a grid structure that locates the
skin segments over the internal structure of the stabilator and has an array
of elastomeric pads that provide the bonding pressure. They press the skin
against the spars and ribs, and the upper and lower skins together at the
trailing edge. A single blind rivet at the nose of each rib aligns the skin and
ribs positively. This jig also has provisions for aligning the stabilator hinge
fittings with respect to the stabilator, so that they may be attached with
mechanical fasteners.

The process shown in Figure 81 is the proposed fabrication sequence for the
stabilator. Final assembly into the CTS is described below.
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STRUCTURE

ASSEMBLE
SPAR/RIB

e
TIP CAPS )

MOLD TIP CAPS

ASSEMBLE AND CURE

TRIM SPARS
TRIM RIB SEGMENTS

STALL HINGE/ACTUATOR

BRACKETS & EROSION
PROTECTION MATERIAL

Stabilator Fabrication Sequence

Figure 81,
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FINAL ASSEMBLY

Final assembly of the CTS is accomplished in the fixture that is shown
schematically in Figure 82. Its first purpose is to locate the aluminum rear
bulkhead in the tailboom and hold it while it is bolted in place. Next it serves '
as a jig for drilling the four bolt holes that attach the vertical tail, for mill- "
ing off the top of the vertical tail attach bosses, and for locating the jacking/
tiedown fitting. It has drill jig plates for locating the tail rotor driveshaft
bearing and anti-flail supports and for mounting the steps and flare
dispenser. It holds the vertical tail in alignment while the gearboxes and
controls are installed. It positions the stabilator while its actuators are
adjusted.

When the CTS assembly is taken out of this fixture, it is ready to be

mounted on the AH-64A airframe. An alignment j1g is needed for attaching the
CTS to the metal fuselage at Sta 370; a jig that is not a part of the MM&T pro-
gram tooling but is to be provided by the AH-64A project organization under
AVRADCOM Contract DAAJ01-77-C-0064, Modification P00108,
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NON-DESTRUCTIVE EVALUATION (NDE)

NDE is planned to ensure that all CTS components meet the design criteria,
that they are free of internal defects, and that they have the proper internal
geometry. Reports of all NDE activities are maintained by component serial
number for permanent record.

Types of defects that could degrade the components' performance are:

. Delaminations

] Unbonded areas

. Porosity or voids

L Resin rich or resin starved areas

) Geometry of internal spars

. Thick bond lines

. Foreign objects

. Defects in metal attach fittings
The importance of these defects varies with their location and size in
components. Tentative criteria for various areas and sections of the CTS
components are given below.
Figure 83 indicates critical zones A, B, and C of the tailboom. Allowable
limits for disbonds and delaminations that may occur in the ring stiffener,
sandwich wall of the shell mainframe, frames, intercostals, and fairing
hinge supports are detailed in Table 11, NDE techniques scheduled for use
on tailboom hardware are listed in Table 12,
Figure 84 delineates critical zones A and B of the vertical tail, Table 13
lists the limits for disbonds and delaminations allowed in the preassembly

structure and in the completed item. Table 14 is a matrix of NDE techniques
scheduled for vertical tail components,
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TABLE 11. TAILBOOM CRITICAL DISBOND AND

DELAMINATION LIMITS

Zoune A

1. Solid Lamainate:

2. Sandwich Wall:

single delamination to be larger than V.5 inch in diameter.
delaminated areas to be within 3,0 1nches of each other.

more than 10 percent delamination allowed.

single delanunation or disbond to be larger than 1.0 inch 1n diameter.
delaminated or dist. .aed areas to be within 3,0 inches of each other.

more than 10 percent delamination or disbond allowed.

Zone B

1. Sandwich Wall:

single delaminatiun ur disbond to be larger than 1.0 inch in diameter.
delaminations or disbunded areas to be within 3,0 1nches of each other.

more than 10 percent delamination of disbond allowed.

2. Fairing Hinge No more than 20 percent disbond allowed,
Supports:
No single disbond to be more than 1.0 square inch,
No two disbonded areas to be within 2.0 inches of each other.
Zane C
1. Shell: No single delamination to be larger than l.0 1nch in diameter.

2. Frame:

3, Intercostals:

delaminated areas to be within 3,0 inches of each other,

more than 1,0 percent delamination allowed.

single disbond to be more than 1.0 square inch.
two delaminated areas to be within 2.0 inches of each other.

more than 10 percent disbond allowed.

single disbond to be more than 1.0 square inch.
two delaminated areas to be within 2.0 inches of each other.

more than 10 percent disbond allowed.
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TABLE 13, VERTICAL TAIL - CENTER BOX CRITICAL
DISBOND AND DELAMINATION LIMITS

Zone A

1. Laminate: No delamination to be over 1.0 inch in diameter.

No skin delamination to be within 3.0 inches of
another.

No more than 15 percent delamination allowed.

Zone B

1. Preassembly No single void to be more than 0.5 inch in any direc-
Sandwich tion, and not tangent to any edge.
Structure:
No two void areas to be within 3.0 inches of each
other.

No more than 10 percent delamination allowed.

2. Integrally No disbond to be over 0.5 inch in diameter,
Fabricated
Attach No two disbond areas to be within 3.0 inches of each
Brackets: other.

No more than 10 percent disbond allowed,
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Figure 84. Composite Vertical Tail Inspection Zones
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The stabilators' critical zones A and B are defined in Figure 85. Tolerances
for bond and laminate defects permitted in preassembly components,
attachable details, and the completed structure are delineated in Table 15.
Table 16 presents the NDE procedures to be used to evaluate the integrity of
stabilator structural parts.
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TABLE 15. STABILATOR CRITICAL DISBOND AND
DELAMINATION LIMITS

Preassembly and Attachable Details

1. Skin:

No single delamination to be over 1.0 square inch.
No delamination to be within 3.0 inches of another.

No more than 10 percent delamination allowed.

2. Forward and
Aft Spar
Assemblies:

No delamination to be over 1.0 square inch.

No single delaminations t~ be within 3.0 inches of each
other.

No more than 10 percent delamination allowed.

3. Ribs and
Caps:

No skin delamination to be over 1.0 square inch.

No single delamination to be within 3.0 inches of
another.

No more than 10 percent delamination allowed.

.
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TABLE 15. STABILATOR CRITICAL DISBOND AND
DELAMINATION LIMITS (CONT)

Final Assembly
Zone A
1. Forward and No more than 10 percent disbond allowed.
Aft Spar
Assembly No disbond to be larger than 1.0 square inch.
Bonds:
No disbonded area to be within 3.0 inches of another.
2. Ribs and No more than 10 percent for ribs and 20 percent for
Closeouts: closeout disbonds allowed along attach flanges.
No area of disbond to extend across bonding flange.
Zone B
<
1. Forward and No more than 10 percent disbond allowed.
Aft Spar 1
Assembly No single disbond to be more than 1.0 square inch.
Bond:
No disbonded area to be within 3.0 inches of another. t
2. Trailing No more than 10 percent disbond allowed.
Edge Bond
Joint: No voids allowed 0.5 inch from trailing edge.
3. Ribs and No more than 10 percent disbond allowed.
Caps: i
No disbond to extend across bonding flange. 3
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DESIGN TO UNIT PRODUCTION COST

The design to unit production cost (DTUPC) assessment (in Second Quarter
1981 dollars) is based on HHI's experience with procuring and fabricating com-
posites and metal components, and assembling them., The estimate for fab-
ricating composite components is divided into those that are labor-intensive
and labor non-intensive. Different process improvement factors are used

for each category. The procurement of the metal components is related to
similar components in the prototype AH-64A helicopter. The initial estimates
are made for the Serial Number (S/N) 010 unit. The costs are worked back-
ward to the S/N-001 unit and then forward to the average for the 536 shipset
production base.

The labor required to fabricate the three major composite components is
estimated in Tables 17, 18, and 19 for each step in the process. The
composite materials required for three CTS components are listed in
Table 20.

The fabricated metal components that go into each of the three CTS
components and connect them together are estimated in Table 21.

The production improvement factors used in this analysis are:
° Composite fabrication (labor intensive) 80 percent

. Composite fabrication (labor

non-intensive) 85 percent
e Purchased metal components 95 percent
e Purchased composite materials 100 percent

The mathematical ratios for these factors relative to the first unit, tenth
unit, and cumulative average for 536 units are:

Improvement Factor S/N-001 S/N-010 Cumulative Average, 536

80 percent 1.0000 0.3286 0.1373

85 percent 1.0000 0.4636 0.2291 i
95 percent 1.0000 0.8193 0.6281
100 percent 1. 0000 1.0000 1.0000
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TABLE 17. LABOR FOR TAILBOOM (S/N-010)

m

Manminutes
Labor Labor
Intensive Non-Intensive

Clean and prepare
tailboom mandrel

Clean and prepare
frame and
intercostal molds

Cut out fabric

Layup frames and
intercostals

Cure frames and
intercostals

Trim and prepare
honeycomb

Trim and assemble
frames and

intercostals

Assembly tailboom
mandrel

Mount mandrel in
winding machine

Wind inner skin

Place film adhesive

Place honeycomb

2 men, 1 hour

7 molids, 1 man per
mold per 1/4 hour

2 men, 1/2 hour

7 molds, 2 men per
mold per 1/2 hour

1 man, 6 hours

2 men, 1 hour

2 men, 2 hours

2 men, 1/2 hour

2 men, 1/4 hour

1 man, 50 1b, 8 1b/
hour

2 men, 1/4 hour

2 men, 1/2 hour

120

105

60

420

360

120

240

60

30

375

30

60




TABLE 17. LABOR FOR TAILBOOM (S/N-0i%; (CONT)

Manminutes
Labor Labor
Intensive Non-Intensive

Place film adhesive

Place doublers and
fillers

Wind outer skin

Install peel ply

Overwind

Phase I cure

Remove tailboom
from mandrel

Install frames, etc.
Post cure

Trim, drill, install
metal fittings, finish
machine

Inspect

Paint

Weigh

Pack for shipment

2 men, 1/4 hour

2 men, 1/2 hour

1 man, 50 lb, 8 lb/
hour

2 men, 1/4 hour

1 man, 1 ft/min,
20 ft

1 man, 6 hours

2 men, 3/4 hour

2 men, 1 hour
1 man, 6 hours

3 men, 8 hours

1 man, 2 hours
1 man, 2 hours
2 men, 1/4 hour
2 men, 1/4 hour

TOUCH TIME

60

120

1440

30

375

30

20

360

90

360

120

120

30

30

2060
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TABLE 18. LABOR FOR STABILATOR (S/N-010)

Manminutes
Labor Labor
Intensive Non-Intensive

Clean and prepare
skin and broadgoods
mandrels

Clean and prepare
rib, spar and skin
molds

Wind broadgoods
Cut out fabric and

broadgoods

Lay up ribs and spars

Wind skins

Cut out skins
Lay up skins

Phase I cure ribs,
spars and skins

Trim ribs, spars and
skins

2 men, 1 hour

32 molds, ] man,
1/4 hour

1 man, 40 lb, 8 lb/
hour

2 men, 2 hours

16 molds, 1 man/
mold, 1/2 hr

1 man, 30 lb, 8 1b/
hour

2 men, 1/2 hour

2 men, 1 hour

Q)

2 men, 3 hours

120

480

240

480

60

120

300

225

960

@ Coincide with tailboom and vertical fin
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TABLE 18. LABOR FOR STABILATOR (S/N-010) (CONT)

Manminutes

Labor Labor
Intensive Non-Intensive

Assembly ribs and 2 men, 2 hours - 240
spars

Cure rib/spar @ - 0
assembly

Assemble skins 2 men, 1/2 hour 60 -
Cure stabilator @ - 0
Trim, drill, install 2 men, 3 hours 960 -

metal fittings

Inspect 1 man, 1 hour - 60
Paint 1 man, 1 hour - 60
Weigh 2 men, 1/8 hour - 15
Pack for shipment 1 man, 1/4 hour - __15
TOUCH TIME 2520 1875 [

@ Coincide with tailboom and vertical fin
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TABLE 19.

LABOR FOR VERTICAL TAIL (S/N-010)

Manminutes
Labor Labor
Intensive Non-Intensive

Clean and prepare
spar mandrel

Clean and prepare
bulkhead and angle
molds

Cut out fabric

Lay up bulkheads and
angles

Cure bulkheads
Trim bulkheads and
prepare bulkheads and

angles

Assemble fin spar
mandrel

Wind inner skin

Place film adhesive
Place honeycomb

Place film adhesive

1 man, 1 hour

8 molids, 1 man,

1/4 hour

1 man, 1 hour

8 molds, 2 men/
mold, 1/2 hour

2 men, 2 hours

2 men, 1 hour

1 man, 10 lb, 8 lb/
hour

2 men, 1/8 hour

2 men, 1/4 hour

2 men, 1/8 hour

60

120

60

480

240

120

75

15

30

15

Coincide with tailboom and stabilator
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TABLE 19. LABOR FOR VERTICAL TAIL (S/N-010) (CONT)

Manminutes
Labor Labor
Intensive Non-Intensive

Wind outer skin

Place peel ply
Place caul sheets

Overwind

Phase I Cure

Remove spar from
mandrel

Install bulkheads and
angles

Post cure

Trim, drill, install
metal fittings, and
finish machine

Inspect

Paint

1 man, 10 1b, 8 lb/
hour

2 men, 1/8 hour
2 men, 1/4 hour

1 man, 1 ft/min,

9 ft

2 men, 1/4 hour
2 men, hour
2 men, hours

1 man, 1 hour

1 man, 1 hour

15

30

240

480

75

10

60

60

Coincide with tailboom and stabilator
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TABLE 19. LABOR FOR VERTICAL TAIL (S/N-010) (CONT)

Manminutes
|
Labor Labor .
Intensive Non-Intensive
Install leading and 2 men, 1/2 hour 120 -
trailing edge fairings each
Weigh 2 men, 1/8 hour - 15
x
Pack for shipping 1 man, 1/4 hour - 15 ;
TOUCH TIME 1995 370
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TABLE 20. COMPOSITE MATERIAL FOR CTS
(SECOND QUARTER 1981 DOLLARS)

Pounds Square Feet | $ per Pound | § per Square Foot $

TAILBOOM
Graphite 34.1 26.00 887
Kevlar 27.4 9.00 245
Resin 61.0 1.20 73
Honeycomb 13.0 150.00 1950
Film Adhesive 105 1.30 137
Miscellaneous Process Materials 150
25" Allowance for Scrap, Turnaround, etc. 8ol

TOTAL $4303
STABILATOR
Graphite 11.3 26.00 294
Kevlar 7.0 9.00 63
Resin 18.0 1.20 22
Urethane 3.8 15.00 57
Film Adhesive 15.0 1.30 20
Miscellaneous Process Materials 100
25% Allowance for Scrap, Turnaround, etc. 139

TOTAL $ 695
VERTICAL TAIL
Graphite 16.0 26.00 416
Resin 16.0 1.20 19
Hoaeycomb 3.0 150.00 450
Film Adhesive 40 1.30 52
Miscellaneous Process Materials 100
25% Allowance for Scrap, Turnaround, etc. 259

TOTAL $1296

GRAND TOTAL $6294
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TABLE 21. COMPONENTS OTHER THAN STRUCTURAL COMPOSITES
(SEGUND QUARTER 1981 DOLLARS)
One Sta 547 Frame Based on $3800 Phase Il frame ¢ 40 pevcéent $ 5,700
inflation + added complexity and HHi material +
machining estimate)
Two Sta 532 Fittings Based on size and complexity relative to 547 frame 700
Four Intercostal Clips Based on size and complexity relative to 547 frame 400
One Jack Fitting Based on $700 Phase II titanium fitting redesigned 400
into stainless steel
One Set of Tail Rotor Shaft Phase II quote + 40 percent inflation 1,400
Supports
One Set of Maintenance Steps HHI estimate 600
Miscellaneous Hardware, HHI estimate 1,200
Fasteners, etc.
TOTAL $10,400
Two Stabilizer Hinge Fittings Based on size and complexity relative to 547 frame $ 1,000
Six Bathtub Fittings Based on size and complexity relative to 547 frame 900
Two Actuator Fittings Based on size and complexity relative to 547 frame 300
Miscellaneous Hardware, 200
Fasteners, etc.
TOTAL $ 2,400
Vertical Tail
Four Fin Attach Fittings Based on size and complexity relative to 547 frame $ 3,200
Nine Gearbox Attach Fittings Based on size and complexity relative to 547 frame 2,000
Leading Edge, Trailing Edge, Phase I quote 5, 000
and Tip Fairings
Four Maintenance Steps HHI estimate 300
Miscellaneous Hardware, HHI estimate 800
Fasteners, etc.
TOTAL $11,300

GRAND TOTAL

$22, 800




A burdened labor rate of $35 per hour is assumed for composites fabrication
and final assembly.

The DTUPC for the CTS is calculated in Table 22 and is summarized in
Table 23. At the time that the CTS program was terminated, the AH-64A
DTUPC for the comparable metal components was quoted by Teledyne Ryan
Aeronautical (the AH-64A airframe subcontractor) as shown in Table 23.
(Both composite and metal DTUPC's are rounded to the nearest $500.)
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TABLE 22. DESIGN TO UNIT PRODUCTION COST
(SECOND QUARTER 1981 DOLLARS)

Tailboom
S/N-010 Labor Intensive + Support = 1-2/3% x 3105 = 5175 mm
Labor Non-Intensive + Support =
1-2/3% x 2060 = 3433 mm
Metal, etc. = $9100
Composites = $4303
S/N-001 Labor Intensive + Support =
5175
60 x 0.3286 262 mh
Labor Non-Intensive + Support =
3433
7, = 123
60 x 0.4636 385 mh
_ $10,400 _
Metal, etc. = 0.8193 - $12,694
. $4303
Composite = 1.0000 - $4,303
*2/3 factor for nonproductive personnel time
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TABLE 22. DESIGN TO UNIT PRODUCTION COST (CONT)
(SECOND QUARTER 1981 DOLLARS)

Tailboom (Cont)

Cumulative Labor Intensive = 262 x 0.1323 x $35 = $ 1,213
Avg for 53¢
Labor
Non-Intensive = 123 x 0.2291 x $35 = 986
Metal = $12,694 x 0.6281 = 7,973
Composite = $4,303 x 1.0000 = 4,303
TOTAL $14,475
Stabilator
S/N-010 Labor Intensive + Support = 1-2/3% x 2520 = 4200 mm

Labor Non-Intensive + Support =

1-2/3% x 1875 = 3125 mm

Metal, etc. $2400

$695

Composites

*2/3 factor for nonproductive personnel time
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TABLE 22.

(SECOND QUARTER 1981 DOLLARS)

DESIGN TO UNIT PRODUCTION COST (CONT)

Stabilator (Cont)

S/N-001

Cumulative
Avg for 536

Labor Intensive + Support =

4200

60 x 0.3286 =~ 213 mh

Labor Non-Intensive + Support =

3125

60 x 0.4636 112

325 mh

$2400

Metal, etc. = 0.8193

= $2929

$695

T.0000 - $695

Composite =

Labor Intensive 213 x 0.1323 x $35

Labor

Non-Intensive = 112 x 0.2291 x $35
Metal = $2929 x 0.6281
Composite = $695 x 1.0000

TOTAL

$ 986

898

1,840

695

$ 4,419




TABLE 22. DESIGN TO UNIT PRODUCTION COST (CONT)

(SECOND QUARTER 1981 DOLLARS)

Vertical Tail

S/N-010

S/N-001

Labor Intensive + Support = 1-2/3% x 1995 = 3325 mm

Labor Non-Intensive + Support =

1-2/3% x 370 = 617 mm

1"

Metal, etc. $11, 300

$1296

t

Composites

Labor Intensive + Support =

3575
60 x 0.3286 168 mh
Labor Non-Intensive + Support =
617 22
60 x 0.4636 ~ 190 mh

Metal, etc. = 01_18'13;’30 = $13,792

6
Composite = -11132—0%5 = $1296

%2 /3 factor for nonproductive personnel time

L
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TABLE 22. DESIGN TO UNIT PRODUCTION COST (CONT)
(SECOND QUARTER 1981 DOLLARS)

Vertical Tail (Cont)

Cumulative Labor Intensive = 168 x 0.1323 x 3$35 = $ 778
Avg for 536
Labor
Non-Intensive = 22 x 0,2291 x $35 = 176
Metal = $13,792 x 0.6281 = 8,663
Composite = $1296 x 1.0000 = 1,296
TOTAL $10,913
TABLE 23. DTUPC SUMMARY
(SECOND QUARTER
1981 DOLLARS)
Component Metal Composite Saving
Tailboom 28,000 14, 500 13,500
Stabilator 13,500 4,500 9,000
Vertical Tail 32,000 11, 000 21,000
Airframe Modification to Accommo-
date CTS - 2,500 <2,500>
73,500 32,500 41,000

>
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LABORATORY AND FLIGHT TEST PLANS

The CTS program did not progress far enough to conduct any structural
testing. The plan was to conduct static, dynamic, fatigue, ballistic, and
local impact tests to a level that would demonstrate safety of flight for a
25-hour flight test to be conducted under the MM&T program. When this was
demonstrated to be successful, full airworthiness qualification in the labora-
tory and in flight would have been conducted.

LABORATORY TESTS

The CTS laboratory test article consists of the main structural elements of
the CTS assembly including the tailboom, vertical tail spar, and stabilator.
Fairings, etc., that have no influence on strength and/or stiffness are
deleted from the test article.

Criteria for the laboratory tests include:

Static The factor of safety is 1.5 for all conditions, with
negligible permanent set at limit load, and no failure
at ultimate load. The minimum margin of safety for
all flight and ground loading conditions is zero for all
structures, but in such cases where the analytical
margin of safety is less than zero, a positive margin
is to be demonstrated by static test.

Dynamic The natural frequency of the CTS when installed on the
AH~-64A fuselage is such that the modal separation from
the excitation frequencies is better than or equal to
that of the metal tailboom and empennage to reduce
CTS loads and vibration,

Fatigue The CTS is designed to require no major overhaul in
less than 4500 flight hours. Prior to determination of
oscillatory load levels from flight strain surveys,
weighted fatigue level of 10 percent of limit load for
the tailboom and 30 percent for the stabilator and
vertical tail is used for design purposes. The
distribution of maneuver load cycles used in the
fatigue analysis caiculations is derived from the
flight profile shown in Table 24.
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Ballistic The CTS ballistic survivability test consists of
impacting the structure with a 23mm HEI-T projectile
while the CTS is under load, and then applying static
loading to destruction.

Impact After static test failure, a local impact test that
simulates anticipated service abuse will be conducted
on the tailboom and stabilator. Type, location, and
extent of damage will be recorded.

The test article shown in Figure 86 is mounted at Station 370 on a steel
fixture, Straps, loading frames, or whiffletrees are attached to the CTS for
introducing loads. Hydraulic loading jacks apply the test loads between the
airframe attachments and the support framework. The tare weight of the
attachments, linkages, and dummy fixtures is counterbalanced by hydraulic
compensation in the loading system as well as by counterweights, pulleys,
and cable.

Instrumentation includes strain and rosette gages mounted as shown in
Figures 87 through 92, The same gages and locations are used in the lab-
oratory test and in flight. Prior to test and at specified times during the
tests, all gages are calibrated against standards.

Predicted loading conditions are established based on AH-64A flight tests, and
modes of failure are predicted for comparison with actual test results.

FLIGHT TESTS

Limited flight tests are conducted on the load survey air vehicle for a total
of 25 hours and to a level of 80 percent of the AH-64A flight envelope. Flight
conditions are summarized in Table 24.
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MOUNTING FRAME

TAILBOOM
(P/N 7-311114710)

VERTICAL TAIL
(P/N 7-311122700)

&

Q
S K
N

STABILATOR |
(P/N T-311123700) '

Figure 86. Schematic Static/Fatigue Test Setup
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Wl 129.20 ,

FS 539.0
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Figure 88, Strain Gage Installation - Tail Boom FS 539
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Figure 89. Strain Gage Installation - Vertical Stabilizer
Fitting FS 530, 09
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SECTION A-A
TYPICAL

Strain Gage Installation - Vertical Stabilizer Spar
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FIGURE 107. STRAIN GAGE INSTALLATION — STABILATOR SPAR 4 AXIAL STRAIN GAGE, SKIN 5 BBRs
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Figure 92, Strain Gage Installation - Stabilator Spar
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TABLE 24. FLIGHT PROFILE
Speed Spectrum Maneuver Spectrum
Cumulative Exceedances
Speed Speed Envelope % Life | Peak Nz at cg Time at g (sec) per 4500 hours

Hover 23.0 3.00 0.8 200
{HOGF) 2.75 1.2 500

0.5 VH 3.0 2,50 1.7 1,000

0.6 V” 6.0 2.25 2.8 2,000

0.7 VH 15.0 2.00 4.0 5,000

0.8 VH 15.0 1.75 6.0 10,000

0.9 V” 15.0 1.50 10.0 20.000

1.0 \/H 10.0 1.25 12.0 150,000

. 3.0

1.2 VH

Sideward Flight 7.0 0.75 4.2 60,000
Rearward Flight 0,50 2.8 8,000
Vertical Flight 0.25 2.5 1,000
Ground 3.0 0 2.0 200
Total 100.0

NOTES:

1.

2,

o~
.

60 percent of maneuvers shall be unsymmetrical maneuvers,
4D percent of maneuvers shall be symmetrical maneuvers.

Climb and descent time shall be distributed as follows:
5 percent of level flight/moderate maneuvering time in ascending mode.
8 percent of level flight/moderate maneuvering time in descending mode.

Gross weight shall be distributed as follows:

40 percent of life at basic structural design gross weight.

40 percent of life at basic structural design gross weight minus payload and 50 percent fuel.
20 percent of life at maximum alternate gross weight,

The average time per maneuver considering all types of maneuvers shall be in accordance with the
time at g column,

Life shall be divided approximately as follows:

70 percent level flight with moderate maneuvering (0.75-1.25 g).

20 percent pull up and turn maneuvers.

10 percent other maneuvers (control reversals, auto rotation, accelerations/decelerations).

Firing loads shall be additive to the above profile. Assume 810 firing anti-armor missions with

55 percent of mission ordnance (MO) expended during HOGE. Assume 875 firing escort or covering
missions with 20 percent of MO expended during HOGE. Distribution of remaining MO should be in
accordance with the forward flight spectrum.

The altitude spectrum shall be:
80 percent at sea level-STD (representing low altitude flight).
20 percent at 4000 ft 95°F (representing high altitude flight).

GAG cycles: Three engine start/stop cycles per flight hour,
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IMPLICATIONS FOR PRODUCTION

The CTS is designed to be a lightweight, low cost, integrated replacement
for “he AH-64A's metal tail section. As designed, it is attached to the
forward fuselage structure at Sta 370 by a double row of HiLok fasteners and
requires a modification of the metal airframe at this point. The joint thus
formed imposes a small penalty that is well worth accepting in light of the
overall benefits of the CTS that are a 71 pound weight saving (including a

7. 6 pound weight penalty for the joint) and a $41, 000 production cost saving
(including a $2, 500 cost penalty for the joint).

This is the most efficient CTS that can be used, but just before the design
work was terminated, a plan was proposed to change to a "'mix-and-match"
configuration. In this arrangement, any or all of the three composite
components could be used interchangeably with the AH-64A metal compo-
nents. This work was not pursued beyond a preliminary estimate of the
design work required and the potential impacts of such a configuration. The
unique, integrated design of the CTS that came out of the program is the
most effective configuration from a cost and weight standpoint, while the
''mix-and-match'' design would be easier to introduce into the AAH produc-
tion line., Table 25 describes the CTS changes needed to accomplish
Ymix-and-match.’ Figures 93 and 94 compare the CTS as designed with the
two most probable ''mix-and-match' arrangements:

® Metal tailboom with composite stabilator and vertical tail
° Composite tailboom, stabilator, and vertical tail
with the basic metal configuration in terms of weight and cost. In

addition to weighing more and costing more, the '"mix-and-match' design
would have the following consequences:

° Reduced vertical tail incidence increases CFTR flapping and
potentially reduces its fatigue life

® Reduced stabilator hinge space increases hinge loads and
reduces hinge life
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TABLE 25, CTS DESIGN CHANGES TO ACHIEVE '"MIX-AND-MATCH"

Vertical Tail

° Reduce incidence to match metal vertical tail

. Locate stabilator hinge fittings on vertical tail spar instead
of on tailboom aft bulkhead

° Change root fittings and bolt pattern for attachment to
tailboom

Stabilator
* Modify hinge fittings to match fittings on vertical tail spar

® Modify spar/rib structure to accommodate new hinge
fitting location

Tailboom

] Change tailboom aft structure and bolt pattern for attaching
vertical tail
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CONCLUSIONS

This MM&T program demonstrated how advanced composites technology

can be applied to the tail section of the AH-64A helicopter to realize impor-
tant performance, weight, and cost benefits. Methods that HHI has established
are directly applicable to the CTS with the manufacturing refinement segment
of the program having shown the way to build this particular configuration.

The CTS structural design is complete, and the tooling design is nearly so.
It is recommended that the fabrication and test activities be reinstated
in a timely manner so that the CTS can be qualified for installation on the
production AH-64A. For maximum savings, the complete CTS offers:

® 71 pounds weight saving

° $41, 000 DTUPC saving (1981 dollars)

269 parts count saving

)
e 9047 fastener count saving

e $1.1 million fuel saving over the life of the fleet

° $22 million overall production and life cycle cost saving for the
fleet

o 55 fpm vertical rate of climb increase

™ Improved reliability and maintainability

As an alternative to funding the entire CTS, a program limited to only the
composite stabilator can offer:

(] 19 pounds weight saving

° $9000 DTUPC saving (1981 dollars)
] 11 parts count saving
° 41 fastener count saving

PY $300, 000 fuel saving over the life of the fleet
[ ]

$5.9 million overall production and life cycle cost saving for the
fleet

15 fpm vertical rate of climb increase

® Improved reliability and maintainability
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CTS ASSEMBLY AND SUBASSEMB LY DRAWINGS

Figure Title Drawing Number

95 Tailboom Assembly 7-311114700, Sheet ]
Tailboom Assembly Sheet 2
Tailboom Assembly Sheet 3
96 Tailboom Subassembly 7-311114710, Sheet |
Tailboom Subassembly Sheet 2
Tailboom Subassembly Sheet 3
Tailboom Subassembly Sheet 4

97 Vertical Tail Assembly 7-311122700, Sheet 1 i
98 Vertical Tail Subassembly 7-311122710, Sheet 1
Vertical Tail Subassembly Sheet 2
99 Stabilator Assembly 7-311123710, Sheet ]
Stabilator Assembly Sheet 2

}
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